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Abstract: A quantitative structure–activity relationship (QSAR) was carried out to analyze inhibitory activity of 

35 compounds, new polyamine-sensitive inhibitors of the NMDA receptor, using multiple linear regression 

(MLR), artificial neural networks (NN), and the molecular descriptors were calculated using DFT method. This 

study shows that the compounds' activity correlates reasonably well with six selected descriptors by MLR method. 

The correlation coefficients calculated by MLR and after that by NN, R =0.878 and R =0.978 respectively, are 

relatively kind to evaluate the proposed quantitative model, and to predict activity for new polyamine-sensitive 

inhibitors of the NMDA receptor. The test of the performance of the NN model, using a cross-validation method 

with a leave-one-out procedure (LOO) shows that the predictive power of this model is relevant (R=0.966). The 

constitutional molecular descriptors (nN and nHBD) have the most significant impact in the formulation of the 

QSAR model. The molecular docking investigations exploring the influence of the structural differences in the 

interaction potency demonstrate that the number of N atoms expressed by multiple hydrogen bonds helps the ligand 

to be fixed to NR2B subtype of NMDA receptor.   
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1. Introduction 

N-methyl-D-aspartate receptors (NMDARs) are 

ionotropic glutamate receptors that play important 

roles in general neurotransmission 1. This glutamate 

receptor subtype is linked to an ion channel with high 

Ca2+ ion permeability, its conductance critically 

depending on partial depolarization 2. By virtue of 

these properties, NMDARs play a crucial role in 

synaptic plasticity, but also are at risk to convey a 

deadly threat to neurons, since prolonged NMDARs 

stimulation as it may occur in stroke, epilepsy or 

neurological conditions as Chorea Huntington runs 

the risk of Ca2+ overload 3. Polyamines exhibit their 

NMDA receptor modulatory activity based on several 

key structural features, including the number of 

amino- groups, distance between the amino-groups, 

lipophilic or hydrophilic domains, and charge 4. 

Among the attempts to discover neuroprotective 

agents, one is directed towards the search of new 

polyamine-sensitive inhibitors of the NMDA 

receptor. The discovery that the spermine sensitivity 

of [3H]MK-801 binding inhibition is responsive to 

subtle changes in inhibitor structure represents a 

promising target for pharmaceutical research 5. 

Quantitative structure-activity relationships (QSAR) 

studies have acquired an essential position within 

modern chemistry. In QSAR analysis, one or more 

molecular descriptors are related to the molecular 

activity using statistical analysis. The main objective 

of this analysis is the creation of statistical models 

through which it is possible to predict the biological 

activity of novel compounds that have not been tested 

yet. Also, a variety of statistical methodologies 

applicable to chemometric analysis exists, like 

Multiple Linear Regression (MLR), and different 

types of Artificial Neural Networks (NN) 6. These 

techniques can effectively be used to establish a 

correlation model between the molecular structures 

(molecular descriptors) and the associated properties. 

So in this work, in the first part, we attempted to 

establish a quantitative structure-activity relationship 

for new polyamine-sensitive inhibitors of the NMDA 

receptor by studying a selected series of 35                         

5-(4-aminobutyl)-2-thiophene-ethylamine 

derivatives. We accordingly propose a quantitative 

model, and we tried to interpret the activity of the 

compounds relying on the multivariate statistical 

analyses. The multiple regression analysis (MLR) had 

served to predict activities and to select the descriptors 

used as the input parameters for a backpropagation 

network (NN). To test the performance of this model, 

we have used the cross-validation method. In the 

second part we attempted to explore the nature of the 
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interactions established between inhibitors and the 

receptor by using the molecular docking method.  

 

 

 

 

2. Material and Methods  

 2.1. Experimental Data 

In this work, a series of 35 5-(4-aminobutyl)-2-

thiophene-octylamine derivatives that are submitted 

to QSAR techniques, are sketched in Table 1 with 

their observed activities. The Biological activity 

values are converted into a logarithm scale.

Table 1. The chemical structures of the 35 studied compounds, with their observed activities (pIC50 obs) 5, and the 

values of predicted pIC50 by MLR (pIC50 MLR), NN (pIC50 NN) and CV (pIC50 CV). 

 

N 

 

 

Structure of compound 

 

 

pIC50 Obs 
 

pIC50 MLR 

 

pIC50 NN 
 

pIC50 CV 

1  
 
 

 

0.2676 

 

-0.2406 

 

0.2655 

 

 

-0.1573 

 

2 

 

 

 
 

 

 

-0.7242 

 

 

-1.4927 

 

 

-0.7308 

 

 

-0.6508 

 

 

3 

 

 
 

 

 

-2.5538 

 

 

-2.6103 

 

 

-2.5539 

 

 

-2.5604 

 

 

4  
 

 

-2.1156 

 

-1.5249 

 

-2.1141 

 

-2.0453 

 

 

5   

-1.1238 

 

-1.4692 

 

 

-1.1265 

 

-1.0586 

 

 

6  
 

 

-1.1200 

 

 

-0.9021 

 

-1.1204 

 

 

-1.062 

 

 

7 

 

 

  

-0.4273 

 

 

-0.5166 

 

-0.4291 

 

-0.4229 

 

 

8 

 

 
 

 

-1.1818 

 

-1.1443 

 

 

-1.1816 

 

-1.2013 

 

9  
 

 

0.2006 

 

0.1354 

 

 

-0.2085 

 

0.1385 

 

 

10 

 

 

  

-0.0530 

 

-0.1424 

 

-0.0529 

 

-0.0317 

 

11 

 

 
 

 

-0.1832 

 

-0.1587 

 

 

-0.2099 

 

-0.1935 
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12 

 

 
 

 

 

-0.3304 

 

-0.1587 

 

-0.2099 

 

-0.2924 

 

13 

 

 
 

 

-0.5132 

 

-0.1667 

 

 

-0.2086 

 

-0.5403 

14 

 

 
 

 

0.0604 

 

-0.3504 

 

 

0.0603 

 

0.0962 

 

15  
 
 

 

-0.8744 

 

-0.8239 

 

-0.8668 

 

-0.8443 

16 

 

 
 
 

 

-0.7226 

 

-0.6870 

 

-0.7191 

 

-0.6469 

17  
 

 

 

-0.2455 

 

-0.0713 

 

-0.2458 

 

-0.253 

18 

 

 

 
 

 

-0.6232 

 

-0.3376 

 

-0.6212 

 

-0.6282 

19 

 

 
 

 

 

-0.0755 

 

-1.0348 

 

-0.0722 

 

-0.5486 

20 

 

 

 
 
 

 

-2.0453 

 

-1.9063 

 

-2.0463 

 

-2.5269 

21 

 

 
 

 

 

-0.7160 

 

-0.9900 

 

-0.7105 

 

-0.7 

22  
 

 

 

-2.4502 

 

-1.8042 

 

-2.4509 

 

-1.9991 

23 

 

 

 
 

 

-0.3443 

 

-1.0934 

 

-0.8691 

 

-0.7607 

24 

 

 

 
 
 

 

-1.3926 

 

-1.0933 

 

-0.869 

 

 

-0.9032 

 

 25 

 

 
 

 

 

-0.8331 

 

-0.8406 

 

-0.9564 

 

-1.0122 

 

 26 

 

 
 

 

 

-1.0681 

 

-0.8404 

 

 

-0.9457 

 

-1.0787 

 

 

 
 

 

27 

 

 

 
 

 

 

-1.1702 

 

 

-1.0679 

 

 

 

-1.1704 

 

 

-1.1471 

28 

 

 
 

 

-0.9836 

 

-1.0104 

 

 

-0.9839 

 

-0.9778 
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2.2 Molecular descriptors 

To derive QSAR models, an appropriate 

representation of the chemical structure is necessary. 

For this purpose, descriptors of the structure are 

commonly used. These descriptors are generally 

understood as being any term, index or parameter 

conveying structure information. In order to model 

and predict the activities predicted with accuracy, 19 

descriptors (Table 2) including electronic, 

constitutional, steric, and topological parameters were 

taken into account as inputs to the model building. 

 

Table 2. The calculated descriptors used in this study. 

Descriptors Symbol Abbreviation 

 

 

 

Electronic 

Lowest Unoccupied Molecular Orbital 

Electron affinity 

Total energy 

Softness 

Electrophilicity 

Dipole moment 

LUMO 

I 

E 

S 

W 

µ 

 

Topological 

 

 

Sum of Degrees 

Sum of Valence Degrees 

Shape Attribute 

Total Connectivity 

SD 

SVD 

SA 

TC 

 

 

 

Steric 

 

Molecular volume 

Surface Tension 

Molar Refractivity 

Molecular Weight 

Partition coefficient (octanol water) 

Ovality 

MV 

ST 

MR 

MW 

ClogP 

O 

 

Constitutional 

Number of azote atoms 

Number of HBond Donors 

Number of HBond Acceptors 

nN 

nHBD 

nHBA 

 

In this work, electronic descriptors are calculated with 

the aid of Gaussian 03 quantum chemistry package 7, 

the structures of the molecules are optimized by the 

DFT method 8, by employing Becke’s three-

parameter hybrid functional        (B3LYP) 9, with a 6-

31G basis set. For topological, steric and 

29 

 

 
 
 

 

-0.8481 

 

-0.6709 

 

-0.851 

 

-0.8394 

30 

 

 
 

-1.7242 -1.3252 -1.7246 -1.7907 

 

 

31 

 

 

  

-0.7379 

 

-0.1678 

 

-0.7379 

 

-0.6967 

32 

 

 

 

 
 

 

0.1135 

 

0.2453 

 

0.1266 

 

0.1256 

33 

 

 

 
 

 

-0.0170 

 

0.0627 

 

-0.0177 

 

-0.0232 

34 

 

 
 
 

 

0.1307 

 

0.0793 

 

0.1321 

 

0.1413 

35 

 

 
 
 

 

0.5086 

 

 

0.2029 

 

0.5012 

 

0.5323 
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constitutional descriptors, initial geometry 

optimization was carried out with a molecular 

mechanic method using the MM2 force fields with the 

aid of ChemBio3D 13.0 and ACD/ChemSketch 

program 10. 

 

2.3 Methods 

2.3.1 Multiple Linear Regression (MLR) 

The multiple linear regression statistic technique is 

used to study the relationship between one dependent 

variable and several independent variables. It is a 

mathematical technique that minimizes the 

differences between actual and predicted values. The 

multiple linear regression model (MLR) was 

generated using the software SYSTAT, version 13, to 

predict inhibitory activity pIC50. It has also served to 

select the descriptors used as the input parameters for 

a backpropagation network (NN). Statistical 

properties of the proposed equation, including 

correlation coefficient (R), adjusted squared multiple 
(R2

adj), and standard error of estimate (S), probability 

values (p-value) of each descriptor, and Fischer 

statistic or variance ratio (F) are regarded as indicators 

of the performance of the model. 

 

2.3.2 Neural Network (NN) 

NN, which mimics the human brain process 

information, is useful in detecting a complicated non-

linear relationship between a set of inputs and outputs. 

Briefly, the general structure of NN has one input 

layer, one or more hidden layers and one output layer 
11. Each layer has some units corresponding to 

neurons. The units in neighboring layers are fully 

interconnected with links corresponding to synapses. 

The MLR Selected descriptors represent the neurons 

of the input layer, and pIC50 values represent the 

output neurons. Although there are neither theoretical 

nor empirical rules to determinate the number of 

hidden layers, one hidden layer seems to be sufficient 

in the most chemical applications of NN 12, some 

authors have proposed a parameter ρ leading to 

determine the number of hidden neurons, which play 

a significant role to determine the best NN 

architecture. It’s defined as follows: 

𝜌 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑁
 

Four hidden neurons were taken to maintain ρ  between 1 and 3 (1<ρ<3) 13. So, the NN architecture 

is as shown in Figure 1 (6-4-1): 

 

Figure 1. The NN architecture used in this work 

 

2.3.3 Cross-Validation 

Cross-validation is a popular technique used to 

explore the reliability of statistical models. In this 

aspect, the well-known ‹‹leave-one-out›› (LOO) 

approach in which several models were developed 

with one sample ignored each time is used in this work 
14. A CV model is created from the remaining data 

points using the descriptions from of the original 

model and tested on the removed molecules for its 

ability to correctly predict the activity. 

  

2.3.4 Molecular docking 

The molecular docking was generated using the 

AutoDock Tools software 13. The geometries of 

ligands are built and optimized using a molecular 

mechanic method using the MM2 force fields with the 

aid of chemBio3D 13.0 software and the docked 

conformations were viewed using Discovery Studio 

4.1 software package 14. The receptor NMDA (RN2B 

subtype 15) was retrieved from the protein data bank 

(PDB code: 3JPY, resolution: 3.21 Å). The docking 

process parameters are adjusted as follows: The Grid 

size set is 100×100×100 related to xyz dimension, 

with a grid spacing of 0,400Å, the center grid box is 

about 23 Å, -25 Å, 17Å, the number of Genetic 

Algorithm runs = 5, the population size = 150, the 

maximum number of evaluations = 2.5 million, the 

maximum number of generations = 27000 parameters. 

The binding mode analysis is performed with the 

complex (ligand + receptor) having the lowest energy. 

 

3. Results and Discussions  

3.1 Multiple Linear Regression (MLR) 

The data set constituted of the 35 molecules, and the 

19 descriptors is submitted to a progressive multiple 

regression analysis in order to propose an MLR 

model. This method used the coefficients R, R2, and 

the t-values to select the best regression performance. 

The best results were obtained with 6 descriptors 

SVD, nN, MW, E, MV, nHBD forming the following 

equation:      

 

𝐩 𝐈𝐂𝟓𝟎 = 𝟐. 𝟐𝟓𝟖 + 𝟎. 𝟐𝟑𝟒 𝐌𝐖 + 𝟎. 𝟎𝟏𝟒 𝐄 + 𝟎. 𝟕𝟒𝟕 𝐧𝐇𝐁𝐃 − 𝟎. 𝟏𝟐𝟔𝐌𝐕 − 𝟏. 𝟖𝟕𝟖 𝐧𝐍  − 𝟎. 𝟑𝟑𝟒 𝐒𝐕𝐃  (𝟏) 

   R = 0.878           R2= 0.771         S = 0.328           N = 35 
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The contributions of selected descriptors are  illustrated in Figure 2.  

 

Figure 2. Contributions of selected descriptors 

 

The predicted pIC50 (pIC50 MLR) calculated from 

equation (1), and observed pIC50 values (pIC50 obs) 

are presented in Table 1. The selected descriptors with 

their regression coefficients and statistical 

characteristics: t-values, standard errors and p-values 

are shown in Table 3. The correlation of predicted 

activities pIC50 MLR and observed ones pIC50 obs is 

illustrated in Figure 3. 

 

Table 3. The selected descriptors with their regression coefficients and statistical characteristics: t-values, standard 

errors and p-values. 

Descriptor Coefficient Standard Error t-value p-Value 

CONSTANT 2.258 0.709 3.184 0.004 

WM 0.234 0.029 8.192 0.000 

E 0.014 0.002 7.488 0.000 

nHBD 0.747 0.183 4.069 0.000 

MV -0.126 0.015 -8.236 0.000 

nN -1.878 0.247 -7.599 0.000 

SVD -0.334 0.042 -7.879 0.000 

 

 
Figure 3. The correlation of predicted pIC50 (pIC50 MLR) calculated using MLR and observed pIC50 (pIC50 obs) 
 

The correlation coefficient is R = 0.878, the square R2 

= 0.770, and the standard error S = 0.328. These 

values are relevant to evaluate the quantitative model. 

The Constitutional descriptors; Number of azote 

atoms (nN) and Number of H Bond Donors (nHBD) 

are the most important factors in the establishment of 

the QSAR model of 5-(4-aminobutyl)-2-thiophene-

octylamine derivatives. at the same time, we note that 

topological and electronic descriptors seem to have a 

non-negligible impact on the QSAR model. The 

selected descriptors by MLR were, therefore, used as 

the input parameters in NN. 

 

3.2 Neural Network (NN) 

In this work, we submitted the training set to a neural 

network with three layers and complete connections 

between neurons. The input layer is constituted by the 

6 descriptors proposed in equation (1), the hidden 
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layer is selected with 4 tansig neurons, and the output 

layer is a linear neuron. So, the best architecture is: 6-

4-1. Values of pIC50 calculated with 6-4-1 network 

(pIC50 NN) are given in Table 1, and the correlation 

obtained is illustrated in Figure 4. The correlation 

coefficient is R = 0.978, the square R2 = 0.956. 

 

 

R = 0.978           R2= 0.956        S = 0.157         N = 35 

 
Figure 4. The correlation of predicted pIC50 (pIC50 NN) Calculated using the Neural Network 

and observed pIC50 (pIC50 obs) 
 

3.3 Cross-validation 

We have used the cross-validation method with 

‹‹leave one out›› procedure, for the aim of testing the 

performance of the NN and the validity of the choice 

of our descriptors. The calculated pIC50 values (pIC50 

CV) are given in Table 1, and the correlation with 

pIC50 obs is illustrated in Figure 5.  

 

 
Figure 5. The correlation of predicted pIC50 (pIC50 CV) Calculated using the cross-validation 

method with 'leave one out' procedure and observed pIC50 (pIC50 obs) 
R = 0.966        R2 = 0.933        S = 0.192          N = 35 

 

The cross-validation coefficient is R = 0.966 and the 

square R2 = 0.933. 

Best results obtained with the cross-validation (The 

cross-validation coefficient R = 0.966, and the square 

R2 = 0.933) show that the model proposed in this 

paper can predict activity with high performance and 

that the selected descriptors are pertinent. 

 

 

 

3.4 Molecular docking 

Modeling the interaction of a drug with its receptor is 

a complex problem; many forces are involved in the 

intermolecular association: hydrophobic, dispersion, 

or Van der Waals, hydrogen bonding, and 

electrostatic. The dominant force binding appears to 

be hydrophobic interactions, but the specificity of the 

binding appears to be controlled by hydrogen bonding 

and electrostatic interactions 16. So in this work, 

Molecular docking is used to predict the binding mode 
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of ligands within NMDA receptor sites. The 5-(4-

aminobutyl)-2-thiophene-ethylamine shown in Figure 

6, coded as compound 1 in Table 1, and considered as 

the most active molecule in the studied series, is 

chosen as a reference in molecular docking of the rest 

of its derivatives. So in this study, five compounds 1, 

2, 14, 15, 35, were docked to NMDA receptor (NR2B 

subtype) to explore the influence of the structural 

difference in the interaction potency. 

 

Figure 6. Chemical structure of compound 1 

 

Figure 7 illustrates in 2D and 3D, the interactions  revealed with the docking of compound 1 to NMDA 

receptor NR2B subtype. 

 
Figure 7. 2D and 3D maps of Molecular docking of compound 1 in the NMDA receptor binding site NR2B 

 

As it is shown in Figure 7, compound 1 established 

four hydrogen bonding throughout its two amino 

groups with important residual sites SER-131 

(1.85A°), PHE-146 (1.94A°), GLU-284 (1.85A°), and 

ASP-265 (1.54A°). Further, the thiophene ring forms 

a π-Lone pair interaction with SER-260 residue. 

The interactions generated from the docking of 

compound 14 with NR2B are illustrated in Figure 8. 

 

Figure 8. 2D and 3D maps of Molecular docking of compound 14 with NMDA receptor NR2B subtype. 

 

The compound 14 forms the same interactions as 

shown with compound 1, except the phenyl ring that 

forms π-sulfur interaction with MET-132 (5.95A°) 

instead of π-lone pair with SER-260 (2.94A°) in the 

case of compound 1. We note that compound 14 is less 

active than compound 1, which could be explained by 

the difference of distances of their aromatic groups’ 

interactions. 

The docking of compound 15 illustrated in Figure 9 

shows the same interactions as for compounds 1 and 

14; however, we did not observe any π interaction, 

which could be the cause of the decrease of its 

activity.
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Figure 9. 2D and 3D maps of Molecular docking of compound 15 in the NMDA receptor NR2B subtype 

 

Figure 10 illustrates the interactions of compound 2. 

One type of interaction is observed, π-sulfur with 

MET-132 (4.21A°) residue, however the amino 

groups did not form any interaction because of the 

alkylation of the N atom, which causes a drop in its 

biological activity. 

 
Figure 10. 2D and 3D maps of Molecular docking of compound 2 in the binding site of the NMDA receptor 

NR2B subtype  

 

Figure 11 illustrates the interactions revealed with  the docking of compound 35 to the NR2B subtype of 

NMDA receptor. 

 

Figure 11. 2D and 3D maps of Molecular docking of compound 35 in the binding site of the NMDA receptor 

 

As shown in Figure 11, compound 35 established four 

interactions π-cation throughout its two amino groups 

with important residues ASP-104 (5.53A°), ASP-265 

(4.11A°), GLU-284 (4.11A°), and GLU-284 

(5.42A°). One hydrogen bonding is formed with ASP-

102(2.17A°). Furthermore, the thiophene ring forms a 

π-π T-shaped interaction with TYR-282(5.73A°) 

residue. 
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From these results we can claim that the binding of 

ligands with NMDA receptor requires a hydrogen 

bonding throughout the two amino groups and an 

aromatic moiety as it is visualized in Figure 12. The 

alkylation of amino groups in compound 2 leads to a 

drop in biological activity and the absence of the 

aromatic group in compound 15 caused a concrete 

decrease in biological activity. Furthermore, the 

number of N atoms seems to play an essential role on 

biological activity potency; this is clear in compound 

35 (pIC50 = 0.5068 µM) which contains 6 N atoms 

compared to compound 1 (pIC50 = 0.2065 µM) which 

contains only 2 N atoms. We note that the number of 

N atoms is selected as a pertinent constitutional 

descriptor nN in QSAR model. Thus, essential 

selected descriptors forming the QSAR model are the 

same that are the most critical impact in molecular 

docking which reveals that nHBD the number of 

hydrogen bonding is a crucial factor in fixation with 

the binding sites. 
 

 
Figure 12. Superimposition of the docked compounds 1, 14 and 35 and visualization of the most important 

interactions formed with NR2B subtype of NMDA receptor  

 

4. Conclusion 

The statistical analysis that we have undertaken to 

establish a structure-activity relationship for the 

antagonists of the NMDA receptor showed that the 

activity of the Derivatives of 5-(4-aminobutyl)-2-

thiophene-octylamine is closely linked to the 

physicochemical descriptors. The compounds' 

activity correlates reasonably well with six descriptors 

selected by multiple linear regression (MLR) method. 

The correlation coefficients calculated by MLR and 

after that by NN, R = 0.878 and R = 0.978 

respectively, are reasonably competent to evaluate the 

quantitative model and to predict activity for new 

polyamine-sensitive inhibitors of the NMDA 

receptor. The CV test of the performance of the NN 

model (R=0.966) proved that the predictive power of 

this model is relevant. Furthermore, the molecular 

docking investigations revealed that the two amino 

groups and aromatic rings which establish hydrogen 

bonding or π-lone pair with the NR2B bindings 

represent the essential moieties in molecular structure 

for NMDA receptor antagonists. This is confirming 

the QSAR results that show that nN and nHBD are 

the most critical descriptors in QSAR model. These 

results could provide important structural insights 

needed to optimize new polyamine-sensitive 

inhibitors of the NMDA receptor. 
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