Electrodeposition of Cu-Zn-Sn coating in citrate medium


  • Yassine Salhi Laboratory of Materials, Electrochemistry and Environement Departement of Chemistry Ibn Tofail University Kénitra Morocco
  • Sghir Cherrouf Laboratory of Materials, Electrochemistry and Environement Departement of Chemistry Ibn Tofail University Kénitra Morocco
  • Mohammed Cherkaoui Laboratory of Materials, Electrochemistry and Environement Departement of Chemistry Ibn Tofail University Kénitra Morocco




The electrodeposition of Cu-Zn-Sn (CZT) coating at ambient temperature was investigated. The bath consists of metal salts SnSO4, ZnSO4,7H2O and CuSO4,5H2O and sodium citrate (NaC6H5Na3O7,2H2O) as a complexing agent. For precipitation, the pH is maintained at 5. The reducing of copper, tin and zinc through Cu2HCit3−, Sncit2− and ZnHcit− complexes respectively are confirmed by the presence of three cathodic peaks on the voltammograms realized on steel and ITO glass substrate. X-ray diffraction patterns revealed peaks corresponding to the phases: Cu-Zn cubic, Cu-Sn hexagonal and β-Sn tetragonal. The deposition rate is 35 μm/h. SEM observation and EDAX analysis showed that the coating consists of a uniform CZT layer of which composition is 55% copper, 20% zinc and 25% tin at -1.5V.  A preliminary study showed a remarkable improvement in the corrosion resistance of CZT coated steel in comparison with bare steel.


- E. Budman, D. Stevens, Tin-Zinc plating, Trans. Inst. Met. Finish., 1998, 76(3), B34.

- E. Guaus, J. Torrent-Burgue´s, Tin–zinc electrodeposition from sulphate–tartrate baths, J. of Electroanal. Chem., 2005, 575, 301-309.

- S. Dubent, M.L.A.D. Mertens, M. Saurat, Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath, Mat. Chem. Phys., 2010, 120, 371-380.

- H. Kazimierczak, P. Ozga, Electrodeposition of Sn–Zn and Sn–Zn–Mo layers from citrate solutions, Surf. Sci., 2013, 607, 33-38.

- J. Zhang, C. Gu, J. Tu, Potentiodynamical deposition and corrosion behavior of thin Zn-Sn coatings with a layered structure and varied composition from deep eutectic solvent, Surf. Coat. Tech., 2017, 320, 640-647.

- S.J. Blunden, A.J. Killmeyer, Sn-Zn alloy electroplates outperform cadmium deposits, Adv. Mater. Processes, 1991, 140(6), 37-39.

- European Patent Plating bath and method for electroplating tin-zinc alloys, EP 1 201 789 B9, 2002, 1-17.

- E. Budman, M. McCoy, Tin-Zinc plating, Met. Finish., 1995, 93 (9), 10-11.

- M. Kiajima, T. Shono, Development of Sn-Zn-Al Lead-Free Solder Alloys, FUJITSU Sci. Tech. J., 2005, 41(2), 225-235.

-E. Guaus, J. Torrent-Burgue´s, Tin-zinc electrodeposition from sulphate-/gluconate baths, J. Electroanal. Chem., 2003, 549, 25-36.

-S. Dubent, M. De Petris-Wery, M. Saurat, H.F. Ayedi, Composition control of tin–zinc electrodeposits through means of experimental strategies, Mat. Chem. Phys., 2007, 104, 146-152.

-C. Zanella, S. Xing, F. Deflorian, Effect of electrodeposition parameters on chemical and morphological characteristics of Cu–Sn coatings from a methanesulfonic acid electrolyte, Surf. Coat. Tech., 2013, 236, 394-399.

-H. Kazimierczak, P. Ozga, A. Jałowiec, R. Kowalik, Tin–zinc alloy electrodeposition from aqueous citrate baths, Surf. Coat. Tech., 2014, 240, 311-319.

-W. Zhang, J. Guebey, M. Toben, K. Weitershaus, Neuer Hochgeschwindigkeitselektrolyt für die galvanise Abscheidung von

glänzenden Reinzinnschichten bei erhöhten Betriebstemperaturen, Luzern/Schweiz, 2011, 520-528.

-A. Sharma, S. Bhattacharya, S. Das, K. Das, Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte, Appl. Surf. Sci., 2014, 290, 373-380.

-J.F. Huang, I.W. Sun, Electrochemical Studies of Tin in Zinc Chloride-1-ethyl-3-methylimidazolium Chloride Ionic Liquids, J. Electrochem. Soc., 2003, 150 (6), 299-306.

-S. Ho Kee, W.J. Kim, J.P. Jung, Reflection characteristics of electroless deposited Sn-3.5Ag for LED lead frames, Surf. Coat. Tech., 2013, 235, 778-783.

-W.X. Zhang, Z.H. Jiang, G.Y. Li, Q. Jiang, J.S. Lian, Electroless Ni–Sn–P coating on AZ91D magnesium alloy and its corrosion resistance, Surf. Coat. Tech., 2008, 202, 2570-2576.

-E. Rudnik, G. Włoch, Studies on the electrodeposition of tin from acidic chloride–gluconate solutions, Appl. Surf. Sci., 2013, 265, 839-849.

- M. Slupska, P. Ozga, Electrodeposition of Sn-Zn-Cu alloys from citrate solutions, Electrochimica Acta, 2014, 141, 149–160.

-R. Lechner, S. Jost, J. Palm, M. Gowtham, F. Sorin, B. Louis, H. Yoo, R.A. Wibowo, R. Hock, Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors, Thin Solid Films, 2012, 535, 5-9.

-J. Iljina, O. Volobujeva, T. Raadik, N. Revathi, J. Raudoja, M. Loorits, R. Traksmaa, E. Mellikov, Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers, Thin Solid Films, 2013, 535,14-17.

- G. Banerjee, S. Das, S. Ghoch, Optical Properties of Cu2ZnSnS4 (CZTS) Made By SILAR Method, Materialstoday: PROCEEDINGS, 2019, 18 Part 2, 494-500.

-R.N. Bhattacharya, J.Y. Kim, Cu-Zn-Sn-S Thin Films from Electrodeposited Metallic Precursor Layers, The Open Surface Science Journal, 2012, 4, 19-24.

-Z. Chea, L. Han, L. Wan, C. Zhang, H. Niu, J. Xu, Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors,Applied Surface Science, 2011, 257, 8490-8492.

-Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors by Jonathan James Scragg, University of Bath, Department of Chemistry, 2010, 1-244.

-Elektrochemische Legierungsabscheidung zur Herstellung von Cu2ZnSnS4 Dünnschichtsolarzellen von Holger H. Kühnlein aus Breitengüßbach, Dresden Universität, 2007, 1-127.

-M. Valdes, M. Modibedi, M. Mathe, T. Hilliec, M. Vazqueza, Electrodeposited Cu2ZnSnS4 thin films, Electrochimica Acta, 2014, 128, 393–399.

-R. Juskenas , S. Kanapeckaite, V. Karpaviciene, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis, G. Niaura, A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells, Solar Energy Materials & Solar Cells, 2012, 101, 277–282.

-M.S. Kumar, S.P. Madhusudanan, S.K. Batabyal, Substitution of Zn in Earth Abundant Cu2ZnSn(S, Se)4 based thin-film solar cells – A status review, Solar Energy Materials and Solar Cells, 2018, 185, 287-299.

-M.F. de Carvalho, I.A. Carlos, Microstructural characterization of Cu-Sn-Zn electrodeposits produced potentiostatically from acid baths based on trisodium nitrilotriacetic, Journal of Electroanalytical Chemistry, 2018, 823, 737-746.

-Y. Salhi, S. Cherrouf, M. Cherkaoui, K. Abdelouahdi, Electrodeposition of nanostructured Sn–Zn coatings, Applied Surface Science, 2016, 367, 64-69.