Novel pyrazole derivatives as inhibitors of stainless steel in 2.0M H2SO4 media: Electrochemical Study

Authors

  • Moussa Ouakki Laboratory of materials, electrochemistry and environment, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco http://orcid.org/0000-0002-6265-4734
  • Hoyam Chahmout Laboratory of materials, electrochemistry and environment, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Sarra Sibous Laboratory of chimie organique, organométallique and théorique, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Mouhsine Galai Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Zakaria Benzakri Laboratory of chimie organique, organométallique and théorique, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Saïd Boukhris Laboratory of chimie organique, organométallique and théorique, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Abdelaziz Souizi Laboratory of chimie organique, organométallique and théorique, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco
  • Mohammed Cherkaoui - Laboratory of materials, electrochemistry and environment, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco - National Higher School of Chemistry, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra, Morocco

DOI:

https://doi.org/10.13171/mjc02003161235mo

Abstract

Metallic materials are well known and widely used in various industrial sectors. However, they can be easily corroded in various aggressive environments. The protective action of stainless steel by two organic pyrazole compounds: {1-amino-5,10-dioxo-3-(p-tolyl)-5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine-2-carbonitrile} and {1-amino-3-(2-chlorophenyl)-5,10-dioxo-5,10-dihydro-1H-pyrazolo[1,2-b] phthalazine-2-carbonitrile} in H2SO4 2.0M medium was studied using the electrochemical technics (Electrochemical Impedance Spectroscopy (EIS), potentiodynamic polarization), Scanning Electron Microscopy (SEM) and Energy Dispersion X-ray spectroscopy (EDX). Polarization curves indicate that both compounds act as anodic inhibitors. A suitable equivalent electrical circuit model was used to calculate the impedance parameters. The adsorption study showed that these compounds are adsorbed to the steel surface according to the adsorption isotherm of Langmuir. Effect of temperature was also investigated and activation parameters were evaluated.

References

E. M. Jallouli, M. Fikrat, Colloque international sur les aciers inoxydables, Mons, 1988,18, 1.

E. M. Jallouli, 2ème Colloque Européen Corrosion dans les usines chimiques et para chimiques, Grenoble, 1994, 2, 9-1.

M. A. Hajji, E. M. Jallouli, S. Belcadi, F. E. White, 3ème Colloque Européen sur la corrosion des industries chimiques et para chimiques, Lyon, France, 1997.

F. M. El-Hossary, N. Z. Negm, S. M. Khalil, A. M. Abed El-Rahman, M. Raaif, S. Mändl, Effect of annealing temperature on hardness, thickness and phase structure of carbonitrided 304 stainless steel, Appl. Phys. A., 2010, 99, 489–495.

V. de F. C. Lins, G. A. dos S. Gonçalves, T. P. Leão, R. B. Soares, C. G. F. Costa, A. K. do N. Viana, Corrosion resistance of AISI 304 and 444 stainless steel pipes in sanitizing solutions of clean-in-place process, Mater. Res., 2016, 19, 333–338.

M. Finšgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review, Corros. Sci., 2014, 86, 17–41.

A.-R. Grayeli-Korpi, H. Savaloni, M. Habibi, Corrosion inhibition of stainless-steel type AISI 304 by Mn coating and subsequent annealing with the flow of nitrogen at different tempera-tures, Appl. Surf. Sci., 2013, 276, 269–275.

M. Shabani-Nooshabadi, M. S. Ghandchi, Introducing the Santolinachamaecyparissus Extract as a Suitable Green Inhibitor for 304 Stainless Steel Corrosion in Strong Acidic Medium, Metall. Mater. Trans. A., 2015, 46, 5139–5148.

N. A. Negm, A. M. A. Sabagh, M. A. Migahed, H. M. A. Bary, H. M. E. Din, Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5M HCl solution, Corros. Sci., 2010, 52, 2122–2132.

S. M. Tawfik, Corrosion inhibition efficiency and adsorption behavior of N,N-dimethyl-4-(((1-methyl-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)-Nalkylbenzenaminium bromide surfactant at carbon steel/hydrochloric acid interface, J. Mol. Liq., 2015, 207, 185–194.

M. Abdallah, H.M. Eltass, M. A. Hegazy,

H. Ahmed, Adsorption and inhibition effect of novel cationic surfactant for pipelines carbon steel in acidic solution, Prot. Met. Phys. Chem. Surf., 2016, 52, 721–730.

J. Gasiorek, A. Szczurek, B. Babiarczuk, J. Kaleta, W. Jonesn, J. Krzak, Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation, Materials, 2018, 11, 197.

Abass A. Olajire, Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures, Journal of Molecular Liquids, 2018, 269, 572–606.

E. McCafferty, Societal Aspects of Corrosion. In: Introduction to Corrosion Science, Springer, 2010, 357.

W. Kautek, The galvanic corrosion of steel coatings: aluminum in comparison to cadmium and zinc, Corros. Sci., 1988, 28, 173-199.

M. Abdullah Dar, A review: plant extracts and oils as corrosion inhibitors in aggressive media. Ind Lubr Tribol., 2011, 63, 227.

K. Tebhji, B. Hammouti, H. Oudda, A. Ramdani, A. Benkadour, The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution, Appl. Surf. Sci., 2005, 252, 1378-1385.

H. Tian, W. Li, K. Cao, B. Hou, Potent inhibition of copper corrosion in neutral chloride media by novel non-toxic thiadiazole derivatives, Corrosion Science, 2013, 73, 281–291.

E.M. Sherif, S.-M. Park, Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions, Electrochim. Acta, 2006, 51, 6556.

L. Ying, F. Haitao, Z. Yifan, W. Wuji, Study on the inhibiting behavior of AMT on bronze in 5% citric acid solution, J. Mater. Sci., 2003, 38,

-411.

O. Blajiev, A. Hubin, Inhibition of copper corrosion in chloride solutions by amino-mercapto-thiadiazol and methyl-mercapto-thiadiazol: an impedance spectroscopy and a quantum-chemical investigation, Electrochim. Acta., 2004, 49, 2761-2770.

Z. Moradi, M. M. Attar, An investigation on the inhibitory action of benzazole derivatives as a consequence of sulfur atom induction, Appl. Surf. Sci., 2014, 317, 657–665.

S. S. Shivakumar, K. N. Mohana, Cantellaasiatica extracts as green corrosion inhibitors for mild steel in 0.5 M H2SO4, Adv. Appl. Sci. Res., 2012, 3, 3097–3106.

A. Aouniti, B. Hammouti, S. Kertit, M. Brighli, The inhibitive effect of some pyridines towards the corrosion of iron in hydrochloric acid solution, Bull. Electrochem., 1998, 14, 193.

A. El-Ouafi, B. Hammouti, H. Oudda, S. Kertit, R. Touzani, A. Ramdani, New bipyrazole derivatives as effective inhibitors for the corrosion of mild steel in 1M HCI medium, Anti-Corros. Meth. Mater., 2002, 49, 199.

W. Li, Q. He, S. Zhang, et al, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium, J Appl Electrochem., 2008, 38, 289.

Z. Tao, S. Zhang, W. Li, B. Hou, Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives, Corrosion Science, 2009, 51, 2588–2595.

M. Rajendran, D. Devapiriam, DFT calculations for corrosion inhibition of copper by tetrazole derivatives, Journal of Chemical and Pharmaceutical Research, 2015, 7(1), 763-773.

V. V. Dhayabaran, I. S. Lydia, J. P. Merlin, P. Srirenganayaki, Inhibition of corrosion of commercial mild steel in presence of tetrazole derivatives in acid medium, Ionics, 2004, 10, 123-125.

M. Yadav, R. R. Sinha, T. K. Sarkar, N. Tiwari, Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution, Journal of Adhesion Science and Technology, 2015, 29, 1690-1713.

R. S. Abdel Hameed, H. I. Al-Shafey, A. S. Abul Magd, H. A. Shehata, Pyrazole Derivatives as Corrosion Inhibitor for C- Steel in Hydrochloric Acid Medium, J. Mater. Environ. Sci. 2012, 3(2), 294-305.

A. Ghanbari, M. M. Attar M. Mahdavian, Corrosion inhibition performance of three imidazole derivatives on mild steel in 1 M phosphoric acid, Materials Chemistry and Physics, 2010, 124, 1205–1209.

M. Ouakki, M. Galai, M. Rbaa, A. S. Abousalem, B. Lakhrissi, E. H. Rifi, M. Cherkaoui, Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium, Heliyon, 2019, 5, e02759.

E. Lamera, S. Bouacida, H. Merazig, A. Chibani, M. Le Borgne, Z. Bouaziz, A. Bouraiou, DMAP as a new efficient catalyst for the one-pot synthesis of condensed phthalazines, Zeitschrift Für Naturforschung B, 2017, 72(5), 361–368.

M. H. Gonzalez, Etude d’un traitement multifonctionnel vert pour la protection contre la corrosion de l’acier au carbone API 5L-X65 en milieu CO2, 2011.

W. B. Rossiter, F. J. Hamilton, Physical methods of chemistry, Electrochemical methods, New-York: John Wiley& sons, Inc, 1986, 2, 904.

I. Epelboin, C. Gabrielli, M. Keddam, H. Takenouti, Electrochemical Corrosion testing, ASTM STP, 1981, 727.

M. Sahin, G. Gece, S. ilgic, Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium, Appl. Electrochem., 2008, 38, 809-815.

M. Ouakki, M. Rbaa, M. Galai, B. Lakhrissi, E. H. Rifi, M. Cherkaoui, Experimental and Quantum Chemical Investigation of Imidazole Derivatives as Corrosion Inhibitors on Mild Steel in 1.0 M Hydrochloric Acid, Journal of Bio-and Tribo-Corrosion, 2018, 4, 35.

A. B. Da Silva, E. D’Elia, J.A. da Cunha Ponciano Gomes, Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine, Corros. Sci. 2010, 52, 788.

N. P. Zhuk, Course on Corrosion and Metal Protection, Metallurgy, Moscow, 1976.

D. Ben Hmamou, R. Salghi, A. Zarrouk, H. Zarrok , O. Benali, M. Errami ,B. Hammouti, Inhibition effect of horehound (Marrubium vulgare L.) extract towards C38 steel corrosion in HCl solution, Res ChemIntermed., 2012, 39(7), 3291-3302.

M. Rbaa, M. Galai, Y. El Kacimi, M. Ouakki, R. Touir, B. Lakhrissi, M. Ebn Touhami, Adsorption Properties and Inhibition of Carbon Steel Corrosion in a Hydrochloric Solution by 2-(4, 5-diphenyl-4, 5-dihydro-1h-imidazol-2-yl)-5-methoxyphenol, Portugaliae Electrochimica Acta, 2017, 35(6), 323-338.

E. Ech-chihbi, M. E. Belghiti, R. Salim, H. Oudda, M. Taleb, N. Benchat, B. Hammouti, F. El-Hajjaji, Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1, 2-a] pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution, Journal Surfaces and Interfaces, 2017, 9, 206–217.

A. O. Yüce, G. Kardaş, Adsorption and inhibition effect of 2-thiohydantoin on mild steel corrosion in 0.1 M HCl, Corros. Sci., 2012, 58, 86–94.

S. S. A. Rehim, H. H. Hassan, M. A. Amin, Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique, Appl. Surf. Sci. 2002, 189, 279.

R. Parsons, The electrical variable and the form of the isotherm for the adsorption of organic compounds at electrodes. J. Electroanal. Chem., 1964, 8, 93-98.

M. Ouakki, M. Galai, M. Cherkaoui, E. H. Rifi, Z. Hatim, Inorganic compound (apatite doped by Mg and Na) as a corrosion inhibitor for mild steel in phosphoric acidic medium, Anal. Bioanal. Electrochem., 2018, 10(7), 943-960.

X. Wu, S. Ma, S. Chen, Z. Xu, A. Sui, General equivalent circuits for faradaic electrode processes under electrochemical reaction control, J. Electrochem. Soc., 1999, 146, 1847.

L. Kadiri, M. Galai, M. Ouakki, Y. Essaadaoui, A. Ouass, M. Cherkaoui, E. H. Rifi, A. Lebkiri, Coriandrum Sativum. L Seeds Extract as a Novel Green Corrosion Inhibitor for Mild Steel in 1.0 M Hydrochloric and 0.5 M Sulfuric Solutions. Anal. Bioanal. Electrochem., 2018, 10, 249-268.

N. M'hanni, M. Galai, T. Anik, M. EbnTouhami, E. H. Rifi, Z. Asfari, R. Touir, Influence of additives selected calix [4] arenes on electroless copper plating using hypophosphite as reducing agent, Surface Coating

K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corrosion of copper in 3% NaCl solution polluted by sulphide ions, Corros. Sci., 2005, 47, 3249-3266.

G. Kardas, The inhibition effect of 2-thiobarbituric acid on the corrosion performance of mild steel in HCl solutions, J. Materials Science, 2005, 41, 337-343.

M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, A. Gandomi, Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution, Corros. Sci., 2008, 50, 2172–2181.

A. K. Singh, M. A. Quraishi, Effect of 2, 2′ benzothiazolyl disulfide on the corrosion of mild steel in acid media, Corros. Sci., 2009, 51, 2752–2760.

J. Aljourani, K. Raeissi, M. A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution, Corros. Sci., 2009, 51, 1836-1843.

C. H. Hsu, F. Mansfeld, Concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion, 2001, 57, 747-748.

M. El Faydy, M. Galai, M. Rbaa, M. Ouakki, B. Lakhrissi, M. Ebn Touhami, Y. El Kacimi, Synthesis and application of new quinoline as hydrochloric acid corrosion inhibitor of carbon steel, Anal. Bioanal. Electrochem., 2018, 10(7), 815-839.

H. Tian, W. Hou, B. Li., Novel application of a hormone biosynthetic inhibitor for the corrosion resistance enhancement of copper in synthetic seawater, Corros. Sci., 2011, 53, 3435-3445.

P. Roy, P. Karfa, U. Adhikari, D. Sukul, Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism, Corros. Sci., 2014, 88, 246-253.

E. Kalman, B. Varhegi, I. Bako, I. Felhosi, F. H. Karman, A. Shaban, Corrosion inhibition by 1-Hydroxy-ethane-1, 1-diphosphonic acid an electrochemical impedance spectroscopy study, J. Electrochem. Soc., 1994, 141, 3357–3360.

J. Flis, T. Zakroczymski, Impedance study of reinforcing steel in simulated pore solution with tannin, J. Electrochem. Soc. 1996, 143, 2458.

F. M. Donahue, K. Nobe, Theory of organic corrosion inhibitors: adsorption and linear free energy relationships, J. Electrochem. Soc., 1965, 112, 886.

E. Kamis, F. Bellucci, R. M. Latanision, E. S. H. El-Ashry, Acid corrosion inhibition of nickel by 2-(triphenosphoranylidene) succinic anhydride, Corrosion, 1991, 47, 677-686.

M. Yadav, L. Gope, N. Kumari, P. Yadav, Corrosion inhibition performance of pyranopyrazole derivatives for mild steel in HCl solution: Gravimetric, electrochemical and DFT studies, J. Mol. Liq., 2016, 216, 78–86.

S. M. Shaban, A. A. Abd-Elaal, S. M. Tawfik, Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution, Journal of Molecular Liquids, 2016, 216, 392–400.

L.C. Murulana, M.M. Kabanda, E.E. Ebenso, Investigation of the adsorption characteristics of some selected sulphonamide derivatives as corrosion inhibitors at mild steel/hydrochloric acid interface: Experimental, quantum chemical and QSAR studies, Journal of Molecular Liquids, 2016, 215, 763–779.

Y. Essaadaoui, M. Galai, M. Ouakki, L. Kadiri, A. Ouass, M Cherkaoui, E. H. Rifi, A. Lebkiri. Study of the Anticorrosive Action of Eucalyptus Camaldulensis Extract in case of Mild Steel in 1.0 M HCl, Journal of Chemical Technology and Metallurgy, 2019, 54(2), 431-442.

O. Fergachi, F. Benhiba, M. Rbaa, M. Ouakki, M. Galai, R. Touir, B. Lakhrissi, H. Oudda, M. Ebn Touhami, Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: electrochemical, UV–visible spectrometry, and DFT calculations, Journal of Bio-and Tribo-Corrosion, 2019, 5, 21.

K. Tarfaoui, M. Ouakki, M. Galai, M. Nehiri, M. Ebn Touhami, N. Barhada, M. Ouhssine, Valorization of the essential oil of Zingiber officinale by its Use as inhibitor against the corrosion of the carbon steel in acid medium hydrochloric acid 1M, Mediterranean Journal of Chemistry, 2019, 8(1), 17-24.

M. Yadav, S. Kumar, N. Tiwari, I. Bahadur, E. E. Ebenso, Experimental and quantum chemical studies of synthesized triazine derivatives as an efficient corrosion inhibitor for N80 steel in acidic medium, J Mol Liq., 2015, 212, 151–67.

S. Martinez, I. Stern, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system, Appl. Surf. Sci., 2002, 199, 83-89.

M. Elachouri, M. S. Hajji, M. Salem, S. Kertit,

J. Aride, R. Coudert, E. Essassi, Some nonionic surfactants as inhibitors of the corrosion of iron in acid chloride solutions, Corros., 1996, 52,

-108.

Published

2020-03-16

Issue

Section

Electrochemistry