Molecular Imprinted Polymer for Ethylmorphine with Methacrylic Acid and Acrylamide as Functional Monomer in Butanol Using Two Polymerization Method

Authors

  • Aliya Nur Hasanah Universitas Padjadjaran
  • Diane Fauzi Universitas Padjadjaran
  • Beska Zausha Witka Universitas Padjadjaran
  • Driyanti Rahayu Universitas Padjadjaran
  • Rimadani Pratiwi Universitas Padjadjaran

DOI:

https://doi.org/10.13171/mjc02003211282anh

Abstract

Ethylmorphine is an opioid that has therapeutic effects as narcotic analgesic and antitussive, which has low levels and can be misused. Hence, it is crucial to monitor by analyze the levels of ethylmorphine in blood selectively. The preparation method that can be used to extract ethylmorphine from the sample is using molecular imprinting solid-phase extraction (MI-SPE) due to its sensitivity and selectivity. This study aims to compare the result of synthesis using two different polymerization methods, and also to examine the analytical performance and characteristics of imprinted polymers from two distinct functional monomers: methacrylic acid (MAA) and acrylamide (AM). The stages of this study include the determination of association constants, synthesis of polymer MI-SPE ethylmorphine using bulk and precipitation polymerization method, extracted template from the polymer, and determined the adsorption ability, capacity, and selectivity of the polymer. MI-SPE that has been made then characterized by using Fourier-Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The results showed that MIP with acrylamide (MIP-AM) as functional monomer and made by precipitation polymerization had better analytic performances than MIP that made by bulk polymerization, with affinity value 0.072 mg/g and homogeneity value -0.77. It is also selective toward ethylmorphine with imprinting factor value 27.43. In addition, the result of characterization using FTIR and SEM showed that MIP-AM 2, MIP-MAA 1, and MIP-MAA 2 might have a low degree of polymerization due to the presence of vinyl peaks, besides MIP-AM 2 and MIP-MAA 2 had smaller particle size than the NIP with an average value of 0,31 ± 0,21 mm and 0.28 ± 0.05 mm. Based on the result of this study, MIP-AM made by precipitation polymerization could be used to extract ethylmorphine on solid-phase extraction.

Author Biographies

Aliya Nur Hasanah, Universitas Padjadjaran

Pharmaceutical Analysis and Medicinal Chemistry Department

Diane Fauzi, Universitas Padjadjaran

Pharmaceutical Analysis and Medicinal Chemistry Department

Beska Zausha Witka, Universitas Padjadjaran

Pharmaceutical Analysis and Medicinal Chemistry Department

Driyanti Rahayu, Universitas Padjadjaran

Pharmaceutical Analysis and Medicinal Chemistry Department

Rimadani Pratiwi, Universitas Padjadjaran

Pharmaceutical Analysis and Medicinal Chemistry Department

References

- NCATS, ETHYLMORPHINE, https://drugs.ncats.io/substance/RWO67D87EU, 2019. Accessed July 19, 2019.

- L. Småbrekke, H. Melbye, Pharmacological treatment of acute cough, Tidsskr Nor Laegeforen, 2009, 129, 998-999.

- R. I. Kemenkes, Peraturan Menteri Kesehatan Republik Indonesia Nomor 20 Tahun 2018 Tentang Perubahan Penggolongan Narkotika, Berita Negara Republik Indonesia, 2018.

- B. Jonasson, U. Jonasson, P. Holmgren, T. Saldeen, Fatal poisonings where ethylmorphine from antitussive medications contributed to death, Int J Legal Med., 1999, 112, 299-302. doi:10.1007/s004140050253.

- A. Helland, C. V. Isaksen, L. Slørdal, Death of a 10-month-old boy after exposure to ethylmorphine, J Forensic Sci., 2010, 55, 551-553. doi:10.1111/j.1556-4029.2009.01294.x.

- J. Frost, T. N. Løkken, A. Helland, I. S. Nordrum, L. Slørdal, Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths, Forensic Sci Int., 2016, 262, 128-137. doi:10.1016/j.forsciint.2016.02.051.

- M. Stefanidou, S. Athanaselis, C. Spiliopoulou, A. Dona, C. Maravelias, Biomarkers of opiate use, Int J Clin Pract., 2010, 64, 1712-1718. doi:10.1111/j.1742-1241.2010.02373.x.

- A. Beltran, F. Borrull, R. M. Marcé, P. A. G. Cormack, Molecularly-imprinted polymers: Useful sorbents for selective extractions, Trends Anal Chem., 2010, 29, 1363-1375. doi:10.1016/j.trac.2010.07.020.

- T. Berg, E. Lundanes, A. S. Christophersen, D. H. Strand, Determination of opiates and cocaine in urine by high pH mobile phase reversed-phase UPLC-MS/MS, J Chromatogr B, 2009, 877, 421-432. doi:10.1016/j.jchromb.2008.12.052.

- M. D. M. R. Fernández, F. Van Durme, S. M. R. Wille, V. Di Fazio, N. Kummer, N. Samyn, Validation of an automated solid-phase extraction method for the analysis of 23 opioids, cocaine, and metabolites in urine with ultra-performance liquid chromatography-tandem mass spectrometry, J Anal Toxicol., 2014, 38, 280-288. doi:10.1093/jat/bku024.

- H. Yan, K. H. Row, Characteristic and synthetic approach of molecularly imprinted polymer, Int J Mol Sci., 2006, 7, 155-178. doi:10.3390/i7050155.

- J. J. Belbruno, Molecularly Imprinted Polymers, Chem Rev, 2019, 119, 94-119. doi:10.1021/acs.chemrev.8b00171.

- S. Amin, S. Damayanti, S. Ibrahim, Synthesis and Characterization Molecularly Imprinted Polymers for Analysis of Dimethylamylamine Using Acrylamide as Monomer Functional, J Kefarmasian Indones, 2018, 8, 76-84. doi:10.22435/jki.v8i2.330.

- K. Golker, B. C. G. Karlsson, G. D. Olsson, A. M. Rosengren, I. A. Nicholls, Influence of composition and morphology on template recognition in molecularly imprinted polymers, Macromolecules, 2013, 46, 1408-1414. doi:10.1021/ma3024238.

- R. Pratiwi, S. Megantara, D. Rahayu, I. Pitaloka, A. N. Hasanah, Comparison of Bulk and Precipitation Polymerization Method of Synthesis Molecular Imprinted Solid Phase Extraction for Atenolol using Methacrylic Acid, J Young Pharm., 2019, 11, 12-16. doi:10.5530/jyp.2019.11.3.

- J. Płotka-Wasylka, N. Szczepańska, M. de la Guardia, J. Namieśnik, Miniaturized solid-phase extraction techniques, Trends Anal Chem., 2015, 73, 19-38. doi:10.1016/j.trac.2015.04.026.

- X. Fu, Q. Yang, Q. Zhou, Q. Lin, C. Wang, Template-Monomer Interaction in Molecular Imprinting : Is the Strongest the Best ?, Open Journal of Organic Polymer Materials, 2015, 5, 58-68. doi:10.4236/ojopm.2015.52007.

- S. Song, A. Wu, X. Shi, R. Li, Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction, Anal Bioanal Chem., 2008, 390, 2141-2150. doi:10.1007/s00216-008-1985-0.

- S. Scorrano, L. Mergola, R. Del Sole, G. Vasapollo, U. Salento, A. Km, Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers, International journal of molecular sciences, 2011, 12, 1735-1743. doi:10.3390/ijms12031735.

- P. Thordarson, Determining association constants from titration experiments in supramolecular chemistry, Chem Soc Rev., 2011, 40, 1305-1323. doi:10.1039/c0cs00062k.

- L. Chen, S. Xu, J. Li, Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications, Chem Soc Rev., 2011, 40, 2922-2942. doi:10.1039/c0cs00084a.

- G. Vasapollo, R. Del Sole, L. Mergola, Molecularly imprinted polymers: Present and future prospective, Int J Mol Sci., 2011, 12, 5908-5945. doi:10.3390/ijms12095908.

- A. N. Hasanah, R. E. Kartasasmita, S. Ibrahim, Synthesis and Application of Glibenclamide Imprinted Polymer for Solid Phase Extraction in Serum Samples Using Itaconic Acid as Functional Monomer, J Appl Sci., 2015, 15, 1288-1296. doi:10.3923/jas.2015.1288.1296.

- L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: Perspectives and applications, Chem Soc Rev., 2016, 45, 2137-2211. doi:10.1039/c6cs00061d.

- L. M. Madikizela, N. T. Tavengwa, L. Chimuka, Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples, J Pharm Biomed Anal., 2018, 147, 624-633. doi:10.1016/j.jpba.2017.04.010.

- Ş. K. Ersoy, E. Tütem, K. S. Başkan, R. Apak, C. Nergiz, Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract, J Chromatography B, 2016, 1017, 89-100. doi:10.1016/j.jchromb.2016.02.034.

- Y. Tian, Y. Wang, S. Wu, Z. Sun, B. Gong, Preparation of ampicillin surface molecularly imprinted polymers for its selective recognition of ampicillin in eggs samples, Int J Anal Chem., 2018, 2018, 1-11. doi:10.1155/2018/5897381.

- S. A. Bhawani, T. S. Sen, M. N. Mohammad Ibrahim, Synthesis of molecular imprinting polymers for extraction of gallic acid from urine,. Chem Cent J., 2018, 12, 1-7. doi:10.1186/s13065-018-0392-7.

- W. F. Su, In Principles of Polymer Design and Synthesis: Radical Chain Polymerization; Springer Berlin Heidelberg: Berlin, 2013, 137-183. doi:10.1007/978-3-642-38730-2_7.

- J. Rane, P. Adhikar, R. L. Bakal, Molecular Imprinting: An Emerging Technology, Asian J Pharm Technol Innov., 2015, 03, 75-91.

- S. Ansari, A. Ghorbani, Molecularly Imprinted Polymers (MIP) for Selective Solid Phase Extraction of Celecoxib in Urine Samples Followed by High-Performance Liquid Chromatography, J Chem Heal Risks, 2017, 7, 225-237.

- A. Rico-Yuste, S. Carrasco, Molecularly imprinted polymer-based hybrid materials for the development of optical sensors, Polymers (Basel), 2019, 11, 1-44. doi:10.3390/polym11071173.

- H. Kempe, M. Kempe, In The Power of Functional Resins in Organic Synthesis: Molecularly Imprinted Polymers; Ed. by J. Tulla-Puche, F. Albericio; Wiley-VCH: Winheim, 2009, 15-44.

- R. A. Lorenzo, A. M. Carro, C. Alvarez-Lorenzo, A. Concheiro, To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs), Int J Mol Sci., 2011, 12, 4327-4347. doi:10.3390/ijms12074327.

- https://pubchem.ncbi.nlm.nih.gov/compound/ Ethylmorphine, 2020, Accessed March, 2020.

- R. Lahsini, M. R. Louhaichi, N. Adhoum, L. Monser, Preparation and application of a molecularly imprinted polymer for determination of glibenclamide residues, Acta Pharm., 2013, 63, 265-275. doi:10.2478/acph-2013-0017.

- T. Renkecz, G. Mistlberger, M. Pawlak, V. Horváth, E. Bakker, Molecularly imprinted polymer microspheres containing photoswitchable spiropyran-based binding sites, ACS Appl Mater Interfaces, 2013, 5, 8537-8545. doi:10.1021/am401958e.

- R. Vendamme, W. Eevers, M. Kaneto, Y. Mlnamizaki, Influence of polymer morphology on the capacity of molecularly imprinted resins to release or to retain their template, Polym J., 2009, 12, 1055. doi:10.1295/polymj.PJ2009098.

- N. Farhanah. A . Halim, M. Noor. Ahmad, A.Y. M. Shakaff, N. Deraman, Grafting amino-acid molecular imprinted polymer on carbon nanotube for sensing, Procedia Eng., 2013, 53, 64-70. doi:10.1016/j.proeng.2013.02.011.

- R. J. Ansell, Characterization of the Binding Properties of Molecularly Imprinted Polymers, Adv Biochem Eng Biotechnol., 2015, 150, 51-93.

- G. T. Rushton, C. L. Karns, K. D. Shimizu, A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs), Anal Chim Acta., 2005, 528, 107-113. doi:10.1016/j.aca.2004.07.048.

- X. Zhang, S. Yang, W. Chen, Y. Li, Y. Wei, A. Luo, Magnetic fluorescence molecularly imprinted polymer based on FeOx/ZnS nanocomposites for highly selective sensing of bisphenol A, Polymers (Basel), 2019, 11, 1-14. doi:10.3390/polym11071210.

- X. Ma, H. Lin, J. Zhang, Preparation and characterization of dummy molecularly imprinted polymers for separation and determination of farrerol from Rhododendron aganniphum using HPLC, Green Chem Lett Rev., 2018, 11, 513-522. doi:10.1080/17518253.2018.1541481.

- S. Bakhtiar, S. A. Bhawani, S. R. Shafqat, Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenyl phenol from spiked blood serum and river water, Chem Biol Technol Agric., 2019, 6, 1-10. doi:10.1186/s40538-019-0152-5.

- A. N. Hasanah, T. N. D. Ningtias, R. Pratiwi, Synthesis of Atenolol-Imprinted Polymers with Methyl Methacrylate as Functional Monomer in Propanol Using Bulk and Precipitation Polymerization Method, J Anal Methods Chem., 2019, 2019, 1-7. doi:10.1155/2019/9853620.

- A. N. Hasanah, T. N. Sari, N. Wijaya, R. E. Kartasasmita, S. Ibrahim, Study of the binding ability of molecular imprinted solid-phase extraction for glibenclamide by optimizing template: Monomer: Crosslinker ratio, Int J Chem Sci., 2014, 13, 863-870.

- W. Peng-Ju, Y. Jun, S. Qing-De, G. Yun, Z. Xiao-Lan, C. Ji-Bao, Rapid Removal of Template from Molecularly Imprinted Polymers by Accelerated Solvent Extraction, Chinese J Anal Chem., 2007, 35, 484-488. doi:10.1016/S1872-2040(07)60044-9.

- P. Liu, L. Liu, L. Zhang, N. Jiang, Z. Liu, Y. Wang, Synthesis and characterization of molecularly imprinted polymers for recognition of ciprofloxacin, Front Chem China, 2008, 3, 378-383. doi:10.1007/s11458-008-0085-1.

- J. N. T. Nguyen, A. M. Harbison, Scanning Electron Microscopy Sample Preparation and Imaging, Molecular Profiling, Humana Press: New York, 2017, 71-84. doi:10.1007/978-1-4939-6990-6.

Downloads

Published

2020-03-21

Issue

Section

Analytical Chemistry