Microwave-assisted synthesis of new aryliminothiazolylidene-2-thiazolidin-4-ones and their azarhodacyanines analogues

Souad Kasmi-Mir ${ }^{1, *}$, Fatima-Zohra Zradni ${ }^{2}$, Mustapha Rahmouni ${ }^{3}$ and Gilbert Kirsch ${ }^{4}$
${ }^{1}$ Laboratoire de Chimie des Substances Naturelles et de Biomolécules, Faculté des Sciences, Université Saad Dahlab Blida 1, Algérie.
${ }^{2}$ Département de Chimie Organique Industrielle, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf d'Oran-USTOMB, Algérie.
${ }^{3}$ Laboratoire de Synthèse et Catalyse, Université Ibn-Khaldoun, Tiaret, Algérie.
${ }^{4}$ Laboratoire d'Ingénierie Moléculaire et Biochimie Pharmacologique, EA 3940, Institut Jean Barriol, Université de Lorraine Metz, 1Bld Arago 57070 Metz, France.

Abstract

We here report an efficient microwave-assisted protocol for the synthesis of new arylimino-thiazolylidene-2-thiazolidin-4-ones 6 and their azarhodacyanines derivatives 7 with quantitative yield from 2'-(methylthio)-4'-oxo-3H,4'H-[2,5-bithiazolylidene]-3'-ium tosylates 5 and 2-arylimino-5-(thiazol-2(3H)-ylidene) thiazolidin-4-ones 6, respectively, using as starting material the 4-thiazoline-2-thiones $\mathbf{1}$ and 3-methyl-2-thioxo-1,3-thiazolidin-4-one 3. The transformation of the tosylate salts $\mathbf{5}$ into their arylimino derivatives 6 has not been reported to date.

Keywords: Aryliminothiazolylidene-2-thiazolidin-4-ones; Azarhodacyanines; Microwave irradiation; DLC.

Introduction

It is well known that thiazole and fused heterocyclic thiazoles derivatives are found to be associated with various biological activities such as antibacterial, antifungal and antiinflammatory activities ${ }^{1-4}$. The 4-thiazolidinone derivatives have played an important role in medicinal chemistry. Moreover, the importance of the research carried out is due to their broad spectrum of biological activity, such as anti- $\mathrm{HIV}^{5,6}$, antimycobacterial ${ }^{7}$, antiproliferative ${ }^{8}$, antimicrobial ${ }^{9,10}$, anti-inflammatory ${ }^{11,12}$, anticancer ${ }^{13}$, and antifungal ${ }^{14}$.

2-Heteroarylimino-1,3-thiazolidin-4-ones in particular thiazolimino- and benzothiazol imino-types, have been described in the literature and used as scaffolds for preparing a range antibacterial and antifungal compounds ${ }^{15-17}$, however, derivatives bearing a bis(thiazol-2(3 H)ylidene moiety as ring have not yet been known.

On the other hand, it has been reported in the literature that rhodacyanine dyes, designed by using the DLC (π-delocalized lipophilic cation) hypothesis ${ }^{18}$, exhibit potent in vitro antimalarial activity against Plasmodium falciparum and antitumor activity ${ }^{19,20}$.

[^0]Furthermore, the azarhodacyanines may be considered analogous to the rhodacyanine dyes and have been previously synthesized and designed as second generation of antimalarial rhodacyanines. Thus, these azarhodacyanines were obtained by condensation of 3-ethyl-5-(1-methylquinolin-2-ylidene)-2-(3-methylthio)-4-oxathiazolinium p-toluenesulfonate with 2-minomethylpyridinium salt in the presence of triethylamine, in refluxing acetonitrile for 12 h in 71% yield 21 (Scheme 1).

Scheme 1. 1-Methyl-2-\{[3-ethyl-5-(1-methylquinolin-2(1H)-ylidene)-4-oxothiazolidin-2-(pyridin-2-ylimino]methyl $\}$ pyridinium chloride (azarhodacyanine)

In view of the biological importance and in continuation of our previous work in which we have studied the beneficial effect of microwave irradiation on the condensation reaction for the synthesis rhodacyanines analogues ${ }^{22}$, we report herein an efficient microwave-assisted protocol for the synthesis of new aryliminothiazolylidene-2-thiazolidin-4-ones (6) from 2'-(methylthio)-4'-oxo-3H,4'H-[2,5-bithiazolylidene]-3'-ium tosylates (5). This method was developed previously in our laboratory ${ }^{22}$ and used the condensation of the starting material with aromatic amines in the presence of triethylamine.

In this paper, 4-thiazoline-2-thione (1) ${ }^{23}$ as starting material was transformed into aryliminothiazolylidene-2-thiazolidin-4-ones (6) which have not been reported to date. Hence, it is through of interest to accommodate 2-heteroarylimino-1,3-thiazolidin-4-ones and thiazole moieties in a single molecular framework and screen for their biologically activities.

The azarhodacyanines (7a,f) were obtained by simple quaternization from the corresponding aryliminothiazolylidene-2-thiazolidin-4-ones ($\mathbf{6} \mathbf{j} \mathbf{I} \mathbf{)}$.

Results and Discussion

Initially, a synthesis of 4-thiazoline-2-thione $\mathbf{1}^{23-26}$ by Hantzsch's cyclization is used for preparing the aryliminothiazolylidene-2-thiazolidin-4-ones 6 under microwave conditions (scheme 1). Two types of heating, conventional and the microwave activation were used.

The reaction under microwave was run at a frequency of 2.45 GHz with continuous irradiation power from 0 to 300 W . The reaction temperature in the microwave cavity was measured with an IR captor (infrared thermometry) and the software algorithm regulates the microwave out-put power so that the preselected maximum temperature is maintained for the desired reaction/irradiation time. Synthesis of $\mathbf{6}$ was accomplished by a four-step sequence from 4-thiazoline-2-thiones $\mathbf{1}$. S-methylation of $\mathbf{1}$ gave access to thiazolium salt $\mathbf{2}$ which was transformed into 5-(thiazol-2(3H)-ylidene)-2-thioxothiazolidin-4-ones $\mathbf{4}$ by condensation with N -methylrhodanine 3in the presence of triethylamine. Activation by S-methylation of 4 furnished salt 5^{22} (Scheme 2).

Scheme 2. Synthetic approach to obtain aryliminothiazolylidene-2-thiazolidin-ones ($\mathbf{6 a}, \mathbf{j}$)
Reagents and conditions:(i) MeI (2 equiv), acetone, rt, 24 h . (ii) $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), N-methylrhodanine (1 equiv), acetone, rt, 24 h . (iii) Methyl p-toluenesulfonate (MPTS) (3 equiv), DMF, $120^{\circ} \mathrm{C}, 4 \mathrm{~h}$. (iv) 5 (1.2 equiv), ArNH_{2} (1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), MeCN , reflux, $4-8 \mathrm{~h}$; MW: 5 (1.2 equiv), ArNH_{2} (1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), $\mathrm{MeCN}, 90^{\circ} \mathrm{C}, 8$ to 12 min .

The target aryliminothiazolylidene-2-thiazolidin-4-ones ($\mathbf{6 a}, \mathbf{l}$) were prepared from a mixture of salt 5 and aromatic amines in presence of triethylamine (in 64-82\% yield) by heating (at $90^{\circ} \mathrm{C}$) and stirring (about $4-8 \mathrm{~h}$) in acetonitrile. In microwave-assisted synthesis conditions, the yields of the new compounds were better than conventional method ($78-95 \%$ yield) and the reaction time in $8-12$ minutes (Table 1).

Table1. Results for ($\mathbf{6 a}, \mathbf{l}$) syntheses under conventional method and under MW irradiation

				Classical heating Method A		MW ${ }^{\text {b }}$ Method B	
Entry	6	R_{1}	Ar	Time (min)	Yield $^{\text {a }}$ (\%)	Time (min)	Yield $^{\text {a }}$ (\%)
1	6a	Me	Ph	360	82	10	92
2	6b	Ph	Ph	360	64	8	78
3	6c	pMeC6 ${ }^{\text {H }}$	Ph	300	79	10	90
4	6d	Me	pMeC6 H_{4}	240	71	10	94
5	6e	Ph	pMeC6 ${ }_{6} \mathrm{H}_{4}$	240	73	8	92
6	6 f	$\mathrm{pMeC}_{6} \mathrm{H}_{4}$	pMeC6 H_{4}	360	80	10	91
7	6g	Me	2-Pyridyl	300	75	8	90
8	6h	Ph	2-Pyridyl	300	72	10	93
9	6 i	$\mathrm{pMeC}_{6} \mathrm{H}_{4}$	2-Pyridyl	300	73	10	95
10	6j	Me	4-Me-2-Pyridyl	480	78	10	88
11	6k	Ph	4-Me-2-Pyridyl	480	80	12	90
12	61	$\mathrm{pMeC}_{6} \mathrm{H}_{4}$	4-Me-2-Pyridyl	480	78	10	86

[^1]Alkylation of aryliminothiazolylidene-2-thiazolidin-4-ones ($\mathbf{6 j} \mathbf{\mathbf { l }} \mathbf{l}$) via quaternization of the pyridine nitrogen atom with methyl iodide or methyl p-toluenesulfonate, gave the corresponding azarhodacyanines (7a,f) in 43-70\% yield under classical heating, during 6-8 h, at $90^{\circ} \mathrm{C}$ in refluxing acetonitrile, and in $64-85 \%$ yield, during $8-15 \mathrm{~min}$, at $120^{\circ} \mathrm{C}$ under microwave irradiation. The reaction is depicted in scheme 1 and the results are summarized in Table 2.

Scheme 3. Synthesis of azarhodacyanines (7a,f)
Reagents and conditions: 6 (1 equiv), MPTS (7 equiv) or MeI (10 equiv), MeCN, reflux; $6-8 \mathrm{~h}$ or MW, $10-15 \mathrm{~min}$ at $120^{\circ} \mathrm{C}$ for MPTS and at $60^{\circ} \mathrm{C}$ for MeI.

Table 2. Results for Azarhodacyanines (7a,f)

Classical heating Method C				MW Method D			
Entry	$\mathbf{7}$	R_{1}	X	Time (min)	Yield $^{\mathrm{a}}(\%)$	Time (min)	Yield $^{\mathrm{a}}(\%)$
1	$\mathbf{7 a}$	Me	pTos	420	55	10	75
2	$\mathbf{7 b}$	Me	I	360	43	8	64
3	$\mathbf{7 c}$	Ph	pTos	420	44	10	77
4	$\mathbf{7 e}$	Ph	I	480	45	13	70
5	$\mathbf{7 f}$	$\mathrm{pMeC}_{6} \mathrm{H}_{4}$	pTos	420	70	15	85
6	$\mathbf{7 f}$	$\mathrm{pMeC}_{6} \mathrm{H}_{4}$	I	420	57	8	69

${ }^{\text {a }}$ Isolated yield
The results summarized in table 1 and 2 show that in microwave-assisted synthesis conditions, the yields of the new compounds $\mathbf{6}$ and 7 were better than conventional method. The difference in reaction time between these two condensation conditions methods procedure was evident.

The structural elucidation of compounds (6 and 7) is based on spectroscopic data $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR) and mass spectrometry HRMS. The attribution for ($2 Z, 5 E$)-stereochemistry of compounds (6 and 7) was based on the literature data ${ }^{19,27}$.

The ${ }^{1} \mathrm{H}$ NMR of compounds ($\mathbf{6}$ and 7) exhibit a typical signal for the $\mathrm{H}-5$ proton of the thiazolic ring around 5.98-6.63 ppm for (6) and $6.45-6.85 \mathrm{ppm}$ for (7), while the ${ }^{1} \mathrm{H}$ NMR spectra of 6 showed $\mathrm{N}-\mathrm{CH}_{3}$ as a singlet at $3.53-4.10 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ NMR spectra of (6 and 7) were characterized by the presence of $\mathrm{C}-2$ rhodanine $\mathrm{C}=\mathrm{N}$ at $153.5-159.7 \mathrm{ppm}$ for (6) and $157.6-160.1 \mathrm{ppm}$ for (7); and $\mathrm{C}=\mathrm{O}$ the $\mathrm{C}-4$ rhodanine at $163.2-166.6 \mathrm{ppm}$ for (6) and 162.8163.2 ppm for (7).

Conclusion

The microwave-assisted condensation reaction of 2^{\prime}-(methylthio)-4'-oxo-3H,4'H-[2,5-bithiazolylidene]-3'-ium tosylates (5a,c) with aromatic amines, is a technique which gives satisfactory experimental results, affording good to high yields of new aryliminothiazolylidene-2-thiazolidin-4-ones ($\mathbf{6 a}, \mathbf{l}$) and their azarhodacyanines derivatives (7a,f), in significantly shorter reaction times compared to classical conditions. Up to now, this new approach has never been reported and may be a complement to those existing in the literature. This class of compound will be soon tested for biological activities.

Acknowledgments

We are grateful to the group of the CRMPO (Rennes I) for mass spectrometry.

Experimental Section

Melting points were determined on a Kofler apparatus. ${ }^{1}$ H NMR spectra were recorded on Bruker ARX 200 (200 MHz), Bruker 250 MHz and Bruker AC 300P (300 MHz) spectrometers and ${ }^{13} \mathrm{C}$ NMR spectra on Bruker AC 300 P (75 MHz) spectrometer in CDCl_{3} or DMSO- d_{6}. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. The mass spectra (MS) on a VARIANT MAT 311 at a ionizing potential of 70 eV in the Centre de Measures Physiques de l'Ouest (CRMPO, Rennes). Reactions under microwave were performed in a PROLABO Synthewave ${ }^{(\mathrm{R})}$ $402(2.45 \mathrm{GHz})$ microwave reactor with a single focused system. All solvents and reagents were purchased from Acros Organics and Aldrich Chemic and used without further purification unless otherwise stated.

Preparation of the compounds $1,2,3,4$ and 5

Compounds (1a,c)

The preparation of the compounds $\mathbf{1}$ was obtained according to the literature ${ }^{22,26}$ from disulfide carbon, amine in aqueous ammonia, and chloroacetone by Hantzsch's cyclization.

3,4-Dimethyl-1,3-thiazole-2(3H)-thione (1a). Beige crystals; yield $=85 \% ; \mathrm{mp} 116^{\circ} \mathrm{C}$.
4-Methyl-3-phenyl-1,3-thiazole-2(3H)-thione (1b). White crystals; yield $=82 \%$; $\mathrm{mp}=151^{\circ} \mathrm{C}$.
4-Methyl-3-(4-methylphenyl)-1,3-thiazole-2-(3H)-thione (1c). Beige crystals; yield= 97%; $\mathrm{mp}=112^{\circ} \mathrm{C}$.

Compounds (2a,c)

The alkylation of $\mathbf{1}$ (30 mmol , 1equiv) with iodomethane (60 mmol , 2equiv) gave (2a-c). ${ }^{22}$
3,4-Dimethyl-2-(methylthio)-1,3-thiazol-3-ium iodide (2a): pale yellow needles; yield: 74\%; $\mathrm{mp}=163^{\circ} \mathrm{C}$.
4-Methyl-3phenyl-2-(methylthio)-1,3-thiazol-3-ium iodide (2b): pink needles; yield: 70\%; $\mathrm{mp}=194^{\circ} \mathrm{C}$.
4-Methyl-3-(4-methylphenyl)-2-(methylthio)-1,3-thiazol-3-ium iodide (2c):orangecrystals; yield: 80%; $\mathrm{mp}=162^{\circ} \mathrm{C}$.

Compound 3

The preparation of the compounds 3 was obtained according to the literature, ${ }^{22}$ from disulfide carbon, amine in aqueous ammonia and chloroacetic acid and was purified by recrystallisation from aqueous ethanol.

3-Methyl-2-thioxo-1,3-thiazolidin-4-one (3):Yellow crystals; yield $=75 \% ; \mathrm{mp}=69-71^{\circ} \mathrm{C}$ (lit. $71^{\circ} \mathrm{C}^{28}$).

Compounds (4a,c) ${ }^{22}$
In a 250 mL round-bottomed flask, 10 mmol of salt $\mathbf{2}, 10 \mathrm{mmol}$ of N-methylrhodanine $\mathbf{3}, 20$ mL of acetone, and 2 mL of triethylamine are placed. After stirring at room temperature during 4 h , a yellow-green solid is formed. It is filtered off and washed several time with acetone.
(5E)-3-Methyl-5-(3,4-dimethylthiazol-2(3H)-ylidene)-2-thioxothiazolidin-4-one
(4a): yellow-green powder; yield $=95 \% ; \mathrm{mp}>260^{\circ} \mathrm{C}$.
(5E)-3-Methyl-5-(4-methyl-3-phenylthiazol-2(3H)-ylidene)-2-thioxothiazolidin-4-one
(4b): yellow powder; yield $=82 \% \mathrm{mp}>260^{\circ} \mathrm{C}$.
(5E)-3-Methyl-5-(4-methyl-3-p-tolylthiazol-2(3H)-ylidene)-2-thioxothiazolidin-4-one
(4c): brown yellow powder, yield $=94 \% ; \mathrm{mp}>260^{\circ} \mathrm{C}$
General Procedure for Salts Tosylates (5a,c) ${ }^{22}$
A mixture of 4 (5 mmol), 15 mmol of MPTS (methyl p-toluenesulfonate), and 3 mL of DMF is stirred at $110-120^{\circ} \mathrm{C}$ during 4 h . The reaction mixture is cooled and 50 mL of acetone is added. After completion, the mixture is cooled down to refrigerated for one night. The resulting salt $\mathbf{5}$ is filtered off and dried under vacuum.
(5E)-3-Methyl-5-(3,4-dimethyl-1,3-thiazol-2-ylidene)-2-(methylthio)-4-oxo-1,3thiazolium p-toluenesulfonate (5a):
Yellow-green powder; yield $=70 \%$; $\mathrm{mp}=253^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 4.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}-\right.$ thiazol); 3.73 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}^{+}$); 2.99 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{S}$); 2.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl);
2.11 (s, 3H, CH3-thiazol).
(5E)-3-Methyl-5-(4-methyl-3-phenyl-1,3-thiazol-2-ylidene)-2-(methylthio)-4-oxo-1,3 thiazolium p-toluenesulfonate (5 bb):
Deep green crystals; yield $=80 \% ; \mathrm{mp}=206^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$7.79-7.74(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ; 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.12$ (s, 1H, H-5);
3.50 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}^{+}$); 2.60 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-S); 2.29 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl); 2.08 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol).
(5E)-3-Methyl-5[4-methyl-3-(4-methylphenyl)-1,3-thiazol-2-ylidene]-2-(methylthio)-
4-oxo-1,3-thiazolium p-toluenesulfonate (5c):
Deep green crystals; yield $=68 \% ; \mathrm{mp}=198^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$:
7.76 (d, 2H, $J=8.0 \mathrm{~Hz}$); 7.57 (d, 2H, $J=8.1 \mathrm{~Hz}$); 7.32 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$);
$7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right) ; 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}^{+}\right) ; 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right)$;
2.48 (s, 3H, p-CH ${ }_{3}$-thiazol); 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl); 2.11 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol).

The spectral data of the compounds $\mathbf{1}, \mathbf{2}, \mathbf{3}, 4$ and $\mathbf{5}$ were identical with reported ones ${ }^{22}$.

II-General procedure for the preparation of aryliminothiazolylidene-2-thiazolidin-2-ones (6a,l)

(a)Classical heating: Method A

To a solution of the appropriate amines (2.5 mmol) in 20 mL of anhydrous acetonitrile, the salts tosylates $5(3 \mathrm{mmol})$ and triethylamine $(0.4 \mathrm{ml}, 3 \mathrm{mmol}, 0.30 \mathrm{~g})$ were added and reaction mixture was refluxed for $4-8 \mathrm{~h}$. Evaporation of the solvent was followed by purification of the residue by recrystallization from ethanol.

(b)Microwave-irradiation (MW): Method B

In an open cylinder quartz reactor $(\phi=1.5 \mathrm{~cm})$ are placed (1.8 mmol) the appropriate salt 5, aromatic amine (1.5 mmol), acetonitrile $(2 \mathrm{~mL})$ and triethylamine $(0.20 \mathrm{~mL}, 0.152 \mathrm{~g}, 1.5$ $\mathrm{mmol})$. The stirred mixture was irradiated at $90^{\circ} \mathrm{C}\left(90 \mathrm{~W}\right.$, Synthewave $\left.{ }^{(\mathrm{R})} 402\right)$ with an appropriate reaction time from 8 to 12 min . The crude reaction mixture was cooled at room temperature; the residue was recrystallized from ethanol.
(2Z,5E)-3-Methyl-5-(3,4-dimethylthiazol-2(3H)-ylidene)-2-(phenylimino)thiazolidin-4-one(6a):
Green dark crystal; $\mathrm{mp}=203{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ; 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$; $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right.$ rod); 3.41 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}$ thiazol); 2.11 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $165.3(\mathrm{C}=\mathrm{O}) ; 155.4(\mathrm{C}=\mathrm{N}) ; 152.8$ (C-2 thiazol); 149.6; 136.1 (C-4 thiazol); 129.2, 123.7, 121.8; 102.5 (dq, $J=190.1$ and $5.4 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); 78.8 (C-5 rod); 34.2 (q, $J=140.2$ $\mathrm{Hz}, \mathrm{CH}_{3}-\mathrm{N}$ thiazol); 29.0 (q, $J=140.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 14.5 (qd, $J=129.5$ and $2.5 \mathrm{~Hz}, \mathrm{CH}_{3}-$ thiazol). HRMS (m / z): found 157.0020 (calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 157.0099).
(2Z,5E)-3-Methyl-5- (4-methyl-3-phenylthiazol-2 (3H)-ylidene)-2-(phenylimino)

thiazolidin-4-one (6b):

Braun dark crystal; $\mathrm{mp}=240^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.40-6.70(\mathrm{~m}, 10 \mathrm{H}) ; 6.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$; $3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 165.6(\mathrm{C}=\mathrm{O})$; 153.5 ($\mathrm{C}=\mathrm{N}$); 152.8 ($\mathrm{C}-2$ thiazol); 148.9; 136.0 (C-4 thiazol); 131.1; 130.4; 129.9; 129.8; 129.5; 129.2; 128.7; 123.4; 121.7; 101.7 (dq, $J=190.1$ and $5.2 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); 80.0 (C-5 rod); 28.7 (q, $J=140.8 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 14.5 ($\mathrm{qd}, J=129.8$ and $2.4 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). HRMS $\left(\mathrm{m} / \mathrm{z}\right.$): found 379.0826 (calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 379.0813).
(2Z,5E)-3-Methyl-5-[4-methyl-3-[4-methylphenyl)]thiazol-2(3H)-ylidene)-
2(phenylimino) thiazolidin-4-one (6 c):
Braun crystal; mp $>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.30(\mathrm{~m}, 5 \mathrm{H}) ; 6.80(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 6.3$ (d, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}$); $6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right.$ rod); $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-p-tolyl); 1.82 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta: 165.9(\mathrm{C}=\mathrm{O}) ; 154.3(\mathrm{C}=\mathrm{N}) ; 152.0(\mathrm{C}=\mathrm{N}$ pyridine); 151.6 (C_{2} thiazol); 141.0; 136.1 (C_{4} thiazol); 132.7;130.1; 129.8; 128.7; 123.5; 121.9; 101.6 (dq, $\mathrm{J}=$ 190.1 and $5.2 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); $80.0(\mathrm{C}-5 \mathrm{rod}) ; 28.7\left(\mathrm{q}, J=140.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); 21.1 (q, $J=126.8$ and $4.4 \mathrm{~Hz}, \mathrm{CH}_{3}$-p-tolyl); 14.5 ($\mathrm{qd}, J=129.0$ and $2.5 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). HRMS (m / z): found 393.0966 (calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 393.0970).
(2Z,5E)-2-[4-(Methylphenyl)imino]-3-methyl-5-(3,4-dimethylthiazol-2(3H)-ylidene) thiazolidin-4-one (6d):
Yellow crystal; $\mathrm{mp}=203^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.11(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}) ; 6.90(\mathrm{~d}, 2 \mathrm{H}, J=$ 7.7 Hz); 5.58 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$); 3.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}$ rod); 3.34 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}$ thiazol); 2.30 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}-p-tolyl); $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 165.4(\mathrm{C}=\mathrm{O}) ; 155.3(\mathrm{C}=\mathrm{N})$; 152.7 (C-2 thiazol); 147.0; 136.1 (C-4 thiazol); 133.1; 129.9, 121.5, 102.4 (qd, $J=190.1$ and $5.3 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); $77.6(\mathrm{C}-5 \mathrm{rod}) ; 34.1\left(\mathrm{q}, J=140.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}\right.$ thiazol); $29.0(\mathrm{q}, J=140.0$
$\mathrm{Hz}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 20.9 (qt, $J=126.9$ and $4.3 \mathrm{~Hz}, \mathrm{CH}_{3}$-p-tolyl); 14.5 ($\mathrm{qd}, J=129.3$ and 2.5 Hz , CH_{3}-thiazol). HRMS (m / z): found 331.0802 (calc. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 331.0813).
(2Z,5E)-2-[(4-Methylphenyl)imino]-3-methyl-5-(4-methyl-3-phenylthiazol-2(3H)-ylidene) thiazolidin-4-one (6e).
Green crystal; mp $>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.4(\mathrm{~m}, 5 \mathrm{H}) ; 7.1(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 7.0(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ; 6.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-p\right.$-tolyl); 1.90 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 163.2(\mathrm{C}=\mathrm{O}) ; 157.9(\mathrm{C}=\mathrm{N}) ; 152.0(\mathrm{C}-2$ thiazol); 137.5; 137.5; 136.1 (C-4 thiazol); 134.6; 131.5; 130.5; 129.4; 123.7; 104.6 (dq, $J=190.2$ and $5.4 \mathrm{~Hz}, \mathrm{C}-2$ thiazol); $78.0(\mathrm{C}-5 \mathrm{rod}) ; 30.0\left(\mathrm{q}, J=141 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); 21.1 ($\mathrm{qt}, J=126.4$ and $4.4 \mathrm{~Hz}, \mathrm{CH}_{3}$-p-tolyl); 14.29 (qd, $J=129$ and $2.4 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}$): found 393.0966 (calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 393.0970).
(2Z,5E)-2-[(4-Methylphenyl)imino]-3-methyl-5-[4-methyl-3-(4-methylphenyl)thiazo$\mathbf{2 (3 H)}$-ylidene]thiazolidin-4-one ($\mathbf{6 f}$):
Green powder; $\mathrm{mp}>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 7.30(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}) ; 7.20(\mathrm{~d}$, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}) ; 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.60(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 2.30 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-p$-tolyl); 2.10 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-p$-tolylimino); 2.01 (s, $3 \mathrm{H}, \mathrm{Me}$ thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 166.6(\mathrm{C}=\mathrm{O}) ; 159.7(\mathrm{C}=\mathrm{N}) ; 152.9(\mathrm{C}-2$ thiazol); 143.2; 139.7; 138.7 (C-4 thiazol); 132.5; 131.3; 130.5; 129.0; 124.8; 117.2; 113.3; 106.0 (dq, $J=190.1$ and $5.2 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); $78.3(\mathrm{C}-5 \mathrm{rod}) ; 29.9\left(\mathrm{q}, J=140.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $21.0(\mathrm{q}$, $J=127.1$ and $4.2 \mathrm{~Hz}, \mathrm{CH}_{3}$-p-tolyl); 20.9 (qt, $J=126.8$ and $4.4 \mathrm{~Hz}, \mathrm{CH}_{3}$ - p-tolyl); 14.1 (qd, $J=$ 129.2 and $2.5 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). HRMS (m / z): found 407.1114 (calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}_{2}, \mathrm{M}^{+}$ requires: 407.2610).
(2Z,5E)-3-Methyl-5-(3,4-dimethylthiazol-2(3H)-ylidene)-2-(pyridin-2-ylimino)thiazolidin -4-one(6 g):
Green dark powder; $\mathrm{mp}=219^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.40(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 7.60(\mathrm{t}, 1 \mathrm{H}, J=$ $4.5 \mathrm{~Hz}) ; 7.20(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}) ; 6.90(\mathrm{t}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{N}$ rod); $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ thiazol); $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $165.0(\mathrm{C}=\mathrm{O})$; $159.1(\mathrm{C}=\mathrm{N})$; 157.4 ($\mathrm{C}=\mathrm{N}$ pyridine); 155.0 ($\mathrm{C}-2$ thiazol); 146.3; 137.7 (C-4 thiazol); 120.8; 117.9; 103.6 (C-5 thiazol); 82.6 (C-5 rod); $35.4\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ thiazol); $30.1\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $15.0\left(\mathrm{CH}_{3}\right.$-thiazol). $\operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: found 318.0596 (calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 318.0609).
(2Z,5E)-3-Methyl-5-(4-methyl-3-phenylthiazol-2(3H)-ylidene)-2-(pyridin-2-ylimino) thiazolidin -4-one (6h):
Green dark crystals; $\mathrm{mp}=209^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.20(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}) ; 7.40(\mathrm{~m}, 5 \mathrm{H})$; $7.10(\mathrm{t}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}) ; 7.10(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 6.80(\mathrm{t}, 1 \mathrm{H}, J=5 \mathrm{~Hz}) ; 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$; $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 165.7(\mathrm{C}=\mathrm{O}) ; 158.9$ ($\mathrm{C}=\mathrm{N}$); 156.5 ($\mathrm{C}=\mathrm{N}$ pyridine); 155.2 (C-2 thiazol); 145.5; 137.8; 136.7; 130.8; 130.6; 130.4; 129.6; 120.4; 117.7; 102.8 (C-5 thiazol); 84.7 (C-5 rod); $29.7\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $15.0\left(\mathrm{CH}_{3}-\right.$ thiazol). HRMS $\left(\mathrm{m} / \mathrm{z}\right.$): found 380.0799 (calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 380.0766).
(2Z,5E)-3-Methyl-5-[4-methyl-3-(4-methylphenyl)thiazol-2(3H)-ylidene]-2-(pyridin-2-ylimino)thiazolidin-4-one (6 i):
Braun powder; $\mathrm{mp}=236^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.10(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}) ; 7.50(\mathrm{t}, 1 \mathrm{H}, J=4.5$ $\mathrm{Hz}) ; 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 7.20(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 7.01(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}) ; 6.8(\mathrm{t}, 1 \mathrm{H}, J$ $=5.0 \mathrm{~Hz}) ; 6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-p\right.$-tolyl); $1.90(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 165.7(\mathrm{C}=\mathrm{O}) ; 159.1(\mathrm{C}=\mathrm{N}) ; 156.6(\mathrm{C}=\mathrm{N}$ pyridine); 152.2 (C-2 thiazol); 145.6; 141.34 (C-4 thiazol); 138.2; 137.5; 130.3; 129.9; 117.7; 116.8; 104.3 (C-

5 thiazol); 88.0 (C-5 rod); $29.7\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $21.9\left(\mathrm{CH}_{3}\right.$-p-tolyl); $15.0\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS $\left(\mathrm{m} / \mathrm{z}\right.$): found 394.0912 (calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 394.0922).
(2Z,5E)-2-(4-Methylpyridin-2-ylimino)-3-methyl-5-(3,4-dimethylthiazol-2(3H)-ylidene) thiazolidin-4-one ($\mathbf{6 j}$):
Green crystals; $\mathrm{mp}=215^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.20(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 6.90(\mathrm{~s}, 1 \mathrm{H}) ; 6.60$ (d, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}$); $6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol); 2.30 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-pyridine); 2.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 164.6(\mathrm{C}=\mathrm{O})$; 158.8 ($\mathrm{C}=\mathrm{N}$); 156.8 ($\mathrm{C}=\mathrm{N}$ pyridine); 154.5 ($\mathrm{C}-2$ thiazol); 148.4 (C-Me pyridine); 145.6; 136.4; 120.9; 103.1 (dq, $J=190.3$ and $5.4 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); 82.1 (C-5 rod); 35.0 ($\mathrm{q}, J=140.8$ $\mathrm{Hz}, \mathrm{CH}_{3}$-N thiazol); $29.5\left(\mathrm{q}, J=141.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$-rod); 20.9 (qt, $J=126.0$ and $4.3 \mathrm{~Hz}, \mathrm{CH}_{3}-$ pyridine); 14.8 (qd, $J=129.5$ and $2.5 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}$): found 332.6771 (calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires 332.0766).

(2Z,5E)-2-(4-Methylpyridin-2-ylimino)-3-methyl-5-(4-methyl-3-phenylthiazol-2(3H)-

 ylidene)thiazolidin-4-one (6 k):Yellow-green crystal; mp $235^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.90(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 7.40(\mathrm{~m}, 5 \mathrm{H})$; $6.90(\mathrm{~s}, 1 \mathrm{H}) ; 6.60(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}) ; 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.3(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}-pyridine); $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 165.4(\mathrm{C}=\mathrm{O}) ; 158.7(\mathrm{C}=\mathrm{N})$; 155.9 ($\mathrm{C}=\mathrm{N}$ pyridine); 154.5 ($\mathrm{C}-2$ thiazol); 148.2; 144.8; 136.3 (C-4 thiazol); 130.3; 130.2; 129.9; 120.4; 118.7; 102.3 (dq, $J=190.0$ and $5.0 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); 84.4 (C-5 rod); 29.2 (q, $J=$ $140.0 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 20.9 (qt, $J=127.7$ and $5.1 \mathrm{~Hz}, \mathrm{CH}_{3}$-pyridine); 14.6 (qd, $J=129.7$ and 3 Hz). HRMS (m / z): found 394.0930 (calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 394.0992).
(2Z,5E)-2-(4-Methylpyridin-2-ylimino)-3-methyl-5-[4-methyl-3-(4-methylphenyl)thiazol-2(3H)-ylidene]thiazolidin-4-one (61):
Braun crystal; $\mathrm{mp}=238^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.80(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ Hz); $7.20\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}\right.$); $6.80(\mathrm{~s}, 1 \mathrm{H}) ; 6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); 2.49 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-pyridine); 2.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-p-tolyl); 1.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 165.3(\mathrm{C}=\mathrm{O}) ; 158.8(\mathrm{C}=\mathrm{N}) ; 156.1$ ($\mathrm{C}=\mathrm{N}$ pyridine); 148.2; 144.9; 140.9; 136.4; 133.6; 130.0; 129.9; 120.5; 118.8; 102.1 (dq, $J=190.1$ and $5.3 \mathrm{~Hz}, \mathrm{C}-5$ thiazol); 84.2 (C-5 rod); 29.2 (q, $J=140.9 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{N}$ rod); 21.4 (qt, $J=126.9$ and $4.3 \mathrm{~Hz}, \mathrm{CH}_{3}-p$-tolyl); 20.9 (qt, $J=127.0$ and $4.4 \mathrm{~Hz}, \mathrm{CH}_{3}$-pyridine); 14.5 (qd, $J=129.8$ and $2.3 \mathrm{~Hz}, \mathrm{CH}_{3}$-thiazol). $\mathrm{HRMS}(m / z)$: found 408.1065 (calc. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires 408.1079).

IV-General Procedure for the preparation of azarhodacyanines (7a,f) by quarternization of ($\mathbf{6 j}, \mathbf{l}$)

(a) Classical heating: Method C

In a 250 mL round bottom flask are placed 1 mmol of $(\mathbf{6 j} \mathbf{j}), 7 \mathrm{mmol}$ of MPTS (methyl p toluenesulfonate) or 10 mmol of MeI, 20 mL of acetonitrile. The reaction mixture was refluxed during 6-8 h. After cooling to room temperature and solvent evaporation, the residue was washed with acetone.

(b) Microwave-irradiation: Method D

In an open quartz reactor are added 1 mmol of imine ($\mathbf{6} \mathbf{j}, \mathbf{l}$), 7 mmol of MPTS (methyl p toluenesulfonate) or 10 mmol of MeI. The mixture was exposed to microwave at $120^{\circ} \mathrm{C}(90$ W, Synthewave ${ }^{(\mathrm{R})}, 402$), for MPTS or $60^{\circ} \mathrm{C}\left(90 \mathrm{~W}\right.$, Synthewave ${ }^{(\mathrm{R})}$, 402) for MeI during 10-15 min . The residue was washed with acetone.

4-Methyl-2-[3-methyl-5-(3,4-dimethylthiazol-2(3H)-2-ylidene)-4-oxothiazolidin-2-ylidene amino]-1-methylpyridinium p-toluenesulfonate (7a):
Red crystals; $\mathrm{mp}=122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.40(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}) ; 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}) ; 7.30(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 7.03(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}) ; 6.91(\mathrm{~s}, 1 \mathrm{H})$); $6.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.89(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ thiazol); $3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ pyridine); 2.37 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl); 2.32 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 162.8$ ($\mathrm{C}=\mathrm{O}$); 160.1 ($\mathrm{C}=\mathrm{N}$); 158.8 ($\mathrm{C}=\mathrm{N}$ pyridine); 152.2 ($\mathrm{C}-2$ thiazol); 145.1; 143.5; 142.6; 139.5 (C-4 thiazol); 131.2; 129.6; 120.5; 117.7; 110.6; 104.9 (C-5 thiazol); 88.7 (C-5 rod); 42.5 $\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 35.7\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod $) ; 30.3\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ thiazol $) ; 22.0\left(\mathrm{CH}_{3}-\right.$ p-tolyl $) ; 21.1\left(\mathrm{CH}_{3}\right.$-tosyl $) ; 14.7$ $\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS (m / z): found 347.1000 (calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 347.1003).
4-Methyl-2-[3-methyl-5-(3,4-dimethylthiazol-2(3H)-2-ylidene)-4-oxo-thiazolidin-2-ylideneamino]-1-methylpyridinium iodide (7b):
Green powder; $\mathrm{mp}>260^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta: 8.60(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 7.60(\mathrm{~s}, 1 \mathrm{H}) ; 7.3$ (d, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}$); $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $3.40(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$ thiazol); 2.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-pyridine); $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 163.2(\mathrm{C}=\mathrm{O})$; $161.1\left(\mathrm{C}=\mathrm{N}^{+}\right) ; 159.9(\mathrm{C}=\mathrm{N}) ; 152.3(\mathrm{C}-2$ thiazol); 140.2; 139.6 (C-4 thiazol); 120.6; 117.2; 110.1; 105.1 (C-5 thiazol); 79.7 (C-5 rod); $42.9\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 36.2\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $30.6\left(\mathrm{CH}_{3}\right.$-N thiazol); $22.4\left(\mathrm{CH}_{3}\right.$-pyridine); $14.8\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS (m / z): found 347.1000 (calc. for: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 347.1003).
4-Methyl-2-[3-methyl-5-(3-phenyl-4-methylthiazol-2(3H)-2-ylidene)-4-oxo-thiazolidin-2-ylideneamino]-1-methylpyridiniump-toluenesulfonate (7c):
Orange crystal; $\mathrm{mp}=207^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 9.04(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}) ; 7.83(\mathrm{~d}, 2 \mathrm{H}, J=7.9$ $\mathrm{Hz}) ; 7.70(\mathrm{~m}, 5 \mathrm{H}) ; 7.20(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 7.10(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 6.90(\mathrm{~s}, 1 \mathrm{H}) ; 6.50(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-5$); 4.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}$); $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); 2.40 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl); 2.20 (s, 3 H , Me-pyridine); $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 163.0(\mathrm{C}=\mathrm{O}) ; 160.3\left(\mathrm{C}=\mathrm{N}^{+}\right)$; 157.5 (C=N); 157.3 (C-2); 153.6; 144.8; 143.6; 138.6 (C-4); 137.6; 134.9; 131.5; 130.6;
129.8; 128.2; 120.5; 116.8; 104.8 (C-5 thiazol); $79.7\left(\mathrm{C}-5\right.$ rod); $42.9\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 29.7\left(\mathrm{CH}_{3} \mathrm{~N}\right.$ rod); $22.3\left(\mathrm{CH}_{3}\right.$-pyridine); $21.3\left(\mathrm{CH}_{3}\right.$-tosyl); $14.9\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS $(\mathrm{m} / \mathrm{z})$: found 409.1153 (calc.for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 409.1568).
4-Methyl-2-[3-methyl-5-(3-phenyl-4-methylthiazol-2(3H)-ylidene)-4-oxo-thiazolidin-2-ylideneamino]-1-methylpyridinium iodide (7d):
Red crystals; $\mathrm{mp}>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.96(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 7.60(\mathrm{~m}, 5 \mathrm{H}) ; 7.20$ $(\mathrm{d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}) ; 7.00(\mathrm{~s}, 1 \mathrm{H}) ; 6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 4.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.50\left(\mathrm{~s}, 3 \mathrm{H}\right.$, Me-pyridine); $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-thiazol). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 162.9(\mathrm{C}=\mathrm{O})$; $159.5\left(\mathrm{C}=\mathrm{N}^{+}\right) ; 158.7$ ($\mathrm{C}=\mathrm{N}$); 157.2 (C-2 thiazol); 146.8; 143.3; 141.3; 139.9; 129.9; 127.5; 123.5; 118.1; 116.3; 105.1; 77.8; $44.8\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 29.8\left(\mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $22.6\left(\mathrm{CH}_{3}\right.$-pyridine); 14.9 $\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS (m / z): found 409.1153 (calc.for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 409.1157).

4-Methyl-2-[3-methyl-5-[3-(4-methylphenyl)]-4-methylthiazol-2(3H)-2-ylidene)-4-oxo-thiazolidin-2-ylideneamino]-1-methylpyridinium p-toluenesulfonate (7e):
Braun crystal; $\mathrm{mp}=134^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 8.70(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 7.70(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}) ; 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 7.1(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 7.25(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 7.01(\mathrm{~d}, 2 \mathrm{H}$, $J=8.0 \mathrm{~Hz}) ; 6.86(\mathrm{~s}, 1 \mathrm{H}) ; 6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ; 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}-\mathrm{rod}\right) ;$ 2.40 (s, 3H, CH ${ }_{3}$-pyridine); 2.30 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-tosyl); 2.20 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$-p-tolyl-Nthiazol); 1.90
 (C-2 thiazol); 153.6; 144.6; 143.9; 142.0; 138.9; 137.8; 132.1; 130.9; 129.4; 128.4; 126.0; 120.3; 115.9; 104.7 (C-5 thiazol); 78.7 (C-5 rod); $42.3\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 29.6\left(\mathrm{CH}_{3}\right.$-rod);
$21.9\left(\mathrm{CH}_{3}\right.$-p-tolyl); $21.4\left(\mathrm{CH}_{3}\right.$-pyridine); $21.1\left(\mathrm{CH}_{3}\right.$-tosyl), $14.3\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS (m / z): found 423.1315 (calc .for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 423.1313).
4-Methyl-2-[3-methyl-5-[3-(4-methylphenyl)]-4-methylthiazol-2(3H)-2-ylidene)-4-oxo-thiazolidin-2-ylideneamino]-1-methylpyridinium iodide (7f).
Braun powder; $m p=260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta: 9.04$ (d, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}$); $7.50(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}) ; 7.32(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 7.20(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 7.03(\mathrm{~s}, 1 \mathrm{H}) ; 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) ;$ $4.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$ rod); $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-p-tolyl); $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ pyridine); 2.00 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-thiazol). ${ }^{13} \mathrm{C}$ NMR (DMSO) $\delta: 163.2(\mathrm{C}=\mathrm{O}) ; 161.2\left(\mathrm{C}=\mathrm{N}^{+}\right)$; 158.2 (C=N); 157.6 (C-2-thiazol); 154.2; 144.3; 142.6; 138.4; 132.5; 131.5; 129.8; 120.4; 116.6; 105.3 (C-5-thiazol); $79.6(\mathrm{C}-5 \mathrm{rod}) ; 43.2\left(\mathrm{CH}_{3}-\mathrm{N}^{+}\right) ; 30.2\left(\mathrm{CH}_{3}\right.$-rod); $22.6\left(\mathrm{CH}_{3}-p-\right.$ tolyl); $21.9\left(\mathrm{CH}_{3}\right.$-pyridine); $14.9\left(\mathrm{CH}_{3}\right.$-thiazol). HRMS (m / z): found 423.1315 (calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{OS}_{2}, \mathrm{M}^{+}$requires: 423.1313).

References

1- K.Tsuji, H. Ishikawa, Bioorg. Med. Chem. Lett., 1994, 4, 1601-1606.
2- B. Lopez-Garcia, A. Veyrat, E. Perez-Paya, L. Gonzalez-Candelas, J.F. Marcos, Int. J. Food Microbiol., 2003, 89, 163-170.
3- R. Mgonzo, A. Geronikaki, P.N. Kourounakis, Pharmazie, 1995, 50, 505-506.
4- S.B. Gomha, K.D. Khalil, Molecules, 2012, 17, 9335-9347.
5- M.L. Barreca, A. Chimirri, L. De Luca, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, J. Balzarini, E. De Clercq, C. Pannecouque, M. Witvrouw, Bioorg. Med. Chem. Lett., 2001, 11, 1793-1796.
6- G.Aridoss, S. Amirthaganesan, M.S. Kim, J.T. Kim, Y.T. Jeong, Eur. J. Med. Chem., 2009, 44, 4199-4210.
7- R. Ottana, R. Maccari, M. L. Barreca, G. Bruno, A. Rotondo, , A. Rossi, C. Giuseppa, R. Di Paola, L. Sautebin, S. Cuzzocrea, M.G. Vigorita, Bioorg. Med. Chem., 2005, 13, 4243-4252.
8- R.V.P. Mujeebur, S. Mukhtar, W.H. Ansari, G. Lemiere, Eur. J. Med. Chem., 2005, 40, 173-184.
9- P. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Deardan, M. Hewitt, Bioorg. Med. Chem., 2008, 16, 3714-3724.
10- B. Goel, T. Ram, R. Tyagi, E. Bansal, A. Kumar, D. Mukherjee, Sinha, J. N. Eur. J. Med.Chem.,1999, 31, 265-269.
11- M. G. Vigorita, R. Ottana, F. Montforte, R. Maccari, A. Trovato, M. Montforte, M. F. Taviano, Bioorg. Med. Chem. Lett., 2001, 11, 2791-2794.

12- M. G. Vigorita, R. Ottana, F. Montforte, R. Maccari, A. Trovato, M. Montforte, M. F. Taviano, Bioorg. Med. Chem. Lett., 2001, 11, 2791-2794.

13- H. Chen, L. Jiao, Z. Guo, X.L. Li, C. Ba, J. Zhang, Carbohydr. Res., 2008, 343, 3015-3020.
14- N. Cesur, Z. Cesur, N. Ergenç, M. Uzun, M. Kiraz, O. Kasimoglu, D. Kaya, Arch. Pharm., 1994, 327, 271-272.
15- K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Soković, Ćirić, A. Glamočlija, J. Bioorg. Med. Chem., 2010, 18, 426-432.

16- P. Vicini, A. Geronkiaki, M. Incerti, F. Zani, J. Dearden, Hewitt, M. Bioorg. Med. Chem., 2008, 16, 3714-3724.

17- P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med. Chem., 2006, 14, 3859-3864.
18- L.B. Chen, Ann. Rev. Cell. Biol., 1988, 4, 155-181.
19- M. Kawakami, K. Koya, T. Ukai, N. Tatsuta, A. Ikegawa, K. Ogawa, T. Shishido, L.B. Chen, J. Med. Chem., 1997, 40, 3151-3160.

20- a) K. Takasu, H. Inoue, H. S. Kim, M. Suzuki, T. Shishido, Y. Wataya, M. Ihara, J. Med. Chem., 2002, 45, 995-998; b) K. Pudhom, K. Kasai, H. Terauchi, H. Inoue, M. Kaiser, R. Brun, M. Ihara, K. Takasu, J. Bioorg. Med. Chem., 2006, 14, 8550-8563.

21- K. Takasu, K. Pudhom, M. Kaiser, R. Brun, M. Ihara, J. Med. Chem., 2006, 49, 4795-4798.
22- S. Kasmi-Mir, A. Djafri, J. Hamelin, L. Paquin., J.P. Bazureau, M. Rahmouni, Synth. Commun., 2007, 37, 4017-4034.
23- W.J. Humphlett, R. Lamon, J. Org. Chem., 1964, 29, 2146-2148.
24- A. Hantzsch, J.H. Weber, Ber. Dtsch. Chem. Ges., 1887, 20, 3118-3132.
25- W.J. Humphlett, R.W. Lamon, J. Org. Chem., 1964, 29, 2148-2150.
26- C. Roussel, R. Gallo, M. Chanon, J. Metzger, J. Chem. Soc. Perkin Trans II, 1974, 1304-1306.
27- L.W. Jones, K.S. Narayan, C.E. Shapiro, T.W. Sweatman, J. Chemother., 2005, 17, 435-440.
28- F.G. Moers, J.J. Steggerda, J. Inorg. Nucl. Chem., 1968, 30, 3217-3222.

[^0]: *Corresponding author:
 E-mail address: kasmimir@yahoo.fr; Kasmi@univ-blida.dz
 DOI: http://dx.doi.org/10.13171/mjc.2.6.2014.16.03.23

[^1]: ${ }^{\text {a }}$ Isolated yields
 ${ }^{\mathrm{b}} \mathrm{P}=90 \mathrm{~W}, \mathrm{~T}=90^{\circ} \mathrm{C}$

