Chemical preparation, kinetics of thermal behavior and infrared studies of $\mathbf{P b}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}\right)_{2} \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ and $\mathrm{Cd}_{\mathbf{3}}\left(\mathrm{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}\right)_{\mathbf{2}} \cdot \mathbf{1 4} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Aziz Kheireddine*, Malika Tridane and Said Belaaouad*
Laboratoire de Chimie-Physique Générale des Matériaux. B. P. 7955.
Faculté des Sciences Ben M’sik. Université Hassan II-Mohammedia-Casablanca. Maroc

Abstract

Chemical preparation, thermal behavior, kinetic and IR studies are given for the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. The later cyclotriphosphates have never been studied except their crystallographic characterization and are stable in the conditions of temperature and pressure of our laboratory until 343 K . The final products of the dehydration and calcination of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, under atmospheric pressure, are respectively their long chain polyphosphates, $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$. The intermediate product of the dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, under atmospheric pressure, is its long chain polyphosphate form $\alpha, \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty} .\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ are stable until their melting points at respectively 946 K and 1153 K . Two different methods, Ozawa and KAS have been selected in order to study the kinetics of thermal behavior of the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ for the first time. The kinetic and thermodynamic features of the dehydration, of the cited cyclotriphosphates, were determined and discussed on the basis of their crystalline structure. $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}, \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ have many applications in industry such as corrosion inhibitors.

Keywords: Chemical preparation; cyclotriphosphate; thermal behavior: kinetic study; thermal analyses (TGADTA); differential scanning calorimetry (DSC); X-ray diffraction; infrared spectrometry.

Introduction

Bivalent cations cyclotriphosphates $\mathrm{M}_{3}{ }_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{n}=10 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Ba}, \mathrm{n}=6\right.$ and $4 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Sr}, \mathrm{n}=7 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{n}=10 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Pb}, \mathrm{n}=3 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Cd}, \mathrm{n}=10$ and 14) have been studied by their crystalline structures ${ }^{1-12}$. Thermal behaviors, kinetic and IR studies have not yet been investigated for $\mathrm{M}_{3}{ }_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ba}, \mathrm{n}=4 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Sr}, \mathrm{n}=7 ; \mathrm{M}^{\mathrm{II}}=\mathrm{Pb}, \mathrm{n}=3\right.$; $\mathrm{M}^{\mathrm{II}}=\mathrm{Cd}, \mathrm{n}=14$). The dehydration of these cyclotriphosphates leads generally to long-chain polyphosphates ${ }^{13,14}, \mathrm{M}^{\mathrm{II}}\left(\mathrm{PO}_{3}\right)_{2}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Ba}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Cd}\right)$ or cyclotetraphosphates ${ }^{15,16}$ $\mathrm{M}^{\mathrm{II}}{ }_{2} \mathrm{P}_{4} \mathrm{O}_{12}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Cd}\right)$. It is worth noticing that long-chain polyphosphates $\mathrm{M}^{\mathrm{II}}\left(\mathrm{PO}_{3}\right)_{2}$ can be used in industry such as corrosion inhibitors ${ }^{17}$ and humidity sensors ${ }^{18}$. The originality of the cyclotriphosphate $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ is that he's the only cyclotriphosphate crystallizing in the tetragonal system until now to our knowledge. The particularity of these two condensed phosphates is that in the formula type $\mathrm{M}_{3}{ }_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\right.$ bivalent cations, $\mathrm{n}=$ number of water molecules), $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has the smallest number of water molecules three and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ has the biggest number of water molecules fourteen.
*Corresponding authors:
E-mail address: kheireddine.aziz@gmail.com; sbelaaouad@gmail.com
DOI: http://dx.doi.org/10.13171/mjc.2.4.2013.22.05.12

The cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, presented in this paper are stable under the conditions of temperature and pressure of our laboratory.

The kinetic of thermal dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ was studied using thermal analyses TGA-DTA coupled by two different methods Ozawa and KAS. In this work, the kinetics and thermodynamic parameters for the dehydration process of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ are reported for the first time. The present work deals with a synthesis, thermal behavior, kinetic and IR studies of the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. It is to be noticed that the results of this paper will be added to previous works on hydrated cyclotriphosphates in order to understand well the mechanism and reactivity of the dehydration of condensed hydrated cyclophosphates.

Results and Discussion

Chemical Preparations

The synthesis of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ powder consists in slowly mixing $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ aqueous solutions with a 3:2 at room temperature. The chemical reaction is as follows

$$
2 \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{~Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{NaNO}_{3}
$$

After 10 hours of mechanical stirring, powder of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was isolated from the resulting precipitate after filtering. Polycrystalline Samples of the title compound, $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, were prepared by adding slowly dilute cyclotriphosphoric acid to an aqueous solution of cadmium carbonate, according to the following chemical reaction:

$$
2 \mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}+3 \mathrm{CdCO}_{3}+11 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
$$

The so-obtained solution was then slowly evaporated at room temperature until polycrystalline samples of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ were obtained. The cyclotriphosphoric acid used in this reaction was prepared from an aqueous solution of $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ passed through an ionexchange resin "Amberlite IR 120" ${ }^{19}$.

Crystal data, chemical analyses and dehydration.

$\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is tetragonal $\mathrm{P}_{1} 2_{1} 2$ with the following unit-cell dimensions : $\mathrm{a}=\mathrm{b}=11.957(5) \AA, \mathrm{c}=12.270(5) \AA$ and $\mathrm{Z}=4^{11-12} . \mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ is hexagonal $\mathrm{P}-3$ with the following unit-cell dimensions : $\mathrm{a}=\mathrm{b}=12.228(3) \AA, \mathrm{c}=5.451$ (3) \AA and $\mathrm{Z}=1^{1-3}$. $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ had never been studied except their crystallographic characterizations. The results of the chemical analyses and dehydration of the title compounds are in total accordance with the formula $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ and are gathered in Table 1.
Table 1 Results of the chemical analyses and dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$
Stability.

$\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$		$\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	
P/Cd		P / Pb	
Theoretical : 2	Experimental : 2.011	Theoretical : 2	Experimental : 2.001
$\mathrm{H}_{2} \mathrm{O}$		$\mathrm{H}_{2} \mathrm{O}$	
Theoretical : 14	Experimental : 13.97	Theoretical : 3	Experimental : 3

The cyclotriphosphate trihydrate of lead, $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the cyclotriphosphate tetradecahydrate of cadmium, $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ are stable in the conditions of temperature and pressure of our laboratory until 343 K .

We have followed, by IR spectrometry, X-ray diffraction and thermogravimetric analyses, the stability of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ during one year, and no evolution was observed. The X-ray diffraction patterns of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ are reported respectively in Fig. 1 and 2.

Figure 1. X-ray powder diffractograms of the phosphates (a) $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (b) amorphous phase, (c) evolution to $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and (d) $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$.

Figure 2. X-ray powder diffractograms of the phosphates (a) $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$,
(b) amorphous phase, (c) $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$, (d) $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$

Characterization of $\mathbf{P b}_{3}\left(\mathbf{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{3} \mathbf{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathbf{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{1 4} \mathbf{H}_{2} \mathrm{O}$ by IR vibration spectrometry.

The IR absorption spectra of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ are reported in Fig. 3 and 4. In the domain $4000-1600 \mathrm{~cm}^{-1}$, the spectra (Fig. 3a, 4a) show bands which are attributed to the stretching and bending vibrations of water molecules. The stretching vibration bands of water molecules $\left(\mathrm{V}_{\mathrm{OH}}\right)$ are situated between 4000 and $3000 \mathrm{~cm}^{-1}$. The bending vibration bands of water molecules (δ_{HOH}) exist between 1700 and $1600 \mathrm{~cm}^{-1}$. Between 1340 and $660 \mathrm{~cm}^{-1}$ the spectra of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Fig. 3a, 4a) show valency vibration bands characteristic of phosphates with ring anions $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}{ }^{20-23}$. Among these bands we can distinguish :- The vibration bands of the (OPO) end groups at high frequencies: $1180<v_{\text {as }}$ $\mathrm{OPO}<1340 \mathrm{~cm}^{-1}$ and $1060<\mathrm{v}_{\mathrm{s}} \mathrm{OPO}<1180 \mathrm{~cm}^{-1}$;

- The valency vibrations of the (P-O-P) ring groups at : $960<v_{\mathrm{as}} \mathrm{POP}<1060 \mathrm{~cm}^{-1}$ and $660<v_{s}$ POP < $960 \mathrm{~cm}^{-1}$;

The valency vibrations of the (POP) ring groups in the spectra (Fig. 3a, 4a), are characterized by the presence of a very strong band at $978 \mathrm{~cm}^{-1}$ for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and at $997 \mathrm{~cm}^{-1}$ for $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ which can be attributed, in both cases, to the v_{as} POP antisymmetric vibrations. On the other hand, the same spectra exhibit an intense band between 700 and $800 \mathrm{~cm}^{-1}$ (at 763 and $744 \mathrm{~cm}^{-1}$ for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 779$ and $750 \mathrm{~cm}^{-1}$ for $\left.\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}\right)$ which can be related to the $v_{\mathrm{s}} \mathrm{POP}$ symmetric vibrations. The strong bands between 700 and $800 \mathrm{~cm}^{-1}$ clearly characterize the structure of a cyclotriphosphate $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-20}$. In the spectral domain $660-400 \mathrm{~cm}^{-1}$, the spectra of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Fig. 3a, 4a) show bending vibration bands characteristic of phosphates with ring anions ${ }^{20-23}$. The vibrations corresponding to the different observed bands are given in Table 2.
Table 2: Frequencies $\left(\mathrm{cm}^{-1}\right)$ of IR absorption bands for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ and assignments of the stretching vibrations of the $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ cycles with approximate symmetry $\mathrm{C}_{3 \mathrm{v}}$

$\begin{gathered} \mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ v / \mathrm{cm}^{-1} \\ \text { This work } \end{gathered}$	$\begin{gathered} \mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{v} / \mathrm{cm}^{-1} \\ \hline \end{gathered}$		vibration	Mode
	This work	Ref. 24		
3427	3519	$\begin{array}{\|l\|} \hline 3545 \\ 3500 \\ \hline \end{array}$	$v \mathrm{OH}$	
$\begin{aligned} & 1658 \\ & 1611 \end{aligned}$	1626	1625	$v_{\delta} \mathrm{HOH}$	
$\begin{aligned} & 1261 \\ & 1211 \end{aligned}$	$\begin{aligned} & \hline 1306 \\ & 1280 \\ & \hline \end{aligned}$	$\begin{aligned} & 1265 \\ & 1242 \end{aligned}$	$\mathrm{vas}_{\text {a }} \mathrm{OPO}^{-}$	$\begin{gathered} \hline \text { mode } \mathrm{E} \\ \text { mode } \mathrm{A}_{1} \\ \hline \end{gathered}$
$\begin{aligned} & 1138 \\ & 1105 \\ & 1066 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1161 \\ & 1088 \end{aligned}$	$\begin{aligned} & 1164 \\ & 1098 \end{aligned}$	$v_{s} \mathrm{OPO}^{-}$	$\left\{\begin{array}{l} \text { mode } \mathrm{A}_{1} \\ \} \text { mode } \mathrm{E} \end{array}\right.$
978	$\begin{aligned} & 997 \\ & 852 \end{aligned}$	1022	$\mathrm{vas}_{\text {a }} \mathrm{POP}$	mode E
$\begin{aligned} & 763 \\ & 744 \\ & 680 \end{aligned}$	$\begin{array}{\|l\|} \hline 779 \\ 750 \\ 680 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 792 \\ 760 \end{array}$	$v_{s} \mathrm{POP}$	$\begin{array}{r} \text { mode E } \\ \text { mode } \mathrm{A}_{1} \end{array}$
635 511	625 525	$\begin{array}{\|l\|} \hline 637 \\ 573 \\ 518 \end{array}$	$\begin{aligned} & \hline \delta \text { OPO+ } \\ & \rho \text { OPO } \end{aligned}$	

Vibrational study of the cyclotriphosphates $\mathbf{P b}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}\right)_{\mathbf{2}} \mathbf{. 3} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ and $\mathbf{C d}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}\right)_{\mathbf{2}} \mathbf{. 1 4 \mathbf { H } _ { \mathbf { 2 } } \mathrm { O }}$

The attributions of the stretching frequencies of the $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ cycles with approximate symmetry $\mathrm{C}_{3 \mathrm{v}}$ in the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ are gathered in Table 2. We shall notice that the approximate symmetry or pseudo-symmetry $\mathrm{C}_{3 \mathrm{v}}$ of the $\mathrm{P}_{3} \mathrm{O}_{9}$ cycles in $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}{ }^{1-3}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}{ }^{11,12}$ which were determined by Xray diffraction is a good approximation which make the interpretation of the IR experimental spectra of the title compounds possible. In the IR spectra of this class of compounds analyzed on the basis of the crystalline unit-cell, one must expect to observe 6 frequencies per stretching vibrations in both IR and Raman domains. In all cases, the observed frequencies in the IR spectra do not exceed those predicted theoretically. The IR bands characteristic of a lowering of the symmetry of the $\mathrm{P}_{3} \mathrm{O}_{9}$ cycle with respect to the symmetry $\mathrm{C}_{3 \mathrm{~h}}$ observed around $680 \mathrm{~cm}^{-1}$ and $1150 \mathrm{~cm}^{-1}$ are observable in the IR spectra of both compounds (680 and $1138 \mathrm{~cm}^{-1}$ for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 680$ and $1161 \mathrm{~cm}^{-1}$ for $\left.\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}\right)$. These frequencies are assigned to the simple modes A_{1} of the $\mathrm{C}_{3 v}$ symmetry. They characterize in IR a lowering of symmetry compared to the $\mathrm{C}_{3 \mathrm{~h}}$ symmetry and are the most intense frequencies which one can expect in the Raman spectra of all the cyclotriphosphates no matter what the symmetry of their cycle $\mathrm{P}_{3} \mathrm{O}_{9}$ is.

Step manner study

The thermal behavior of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ was also studied in a step manner of temperature by X-ray diffraction and IR absorption spectrometry between 293 and 973 K for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 1173 K for $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. X-ray diffraction patterns recorded after annealing for 36 hours at different temperatures reveal that $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ are stable up to 343 K (Fig. 1a, 2a). The removal of water molecules of hydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ observed in the temperature range $373-423 \mathrm{~K}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ between $343-443$, broke the crystalline networks and brings to intermediate amorphous phases ${ }^{25}$ which do not diffract the X-ray (Fig. 1b), nor exhibit the IR absorption bands characteristic of a cyclic phosphate $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}\left(\right.$ Fig. 2b) ${ }^{20-23}$. The amorphous products are, according to Van Wazer ${ }^{25}$, probably a mixture of lead oxide PbO and pentoxide phosphorus $\mathrm{P}_{2} \mathrm{O}_{5}$ for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and mixture of cadmium oxide CdO and pentoxide phosphorus $\mathrm{P}_{2} \mathrm{O}_{5}$ for $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. Generally, when the dehydration of condensed phosphates lead to amorphous and hygroscopic phases, according to Van Wazer ${ }^{25}$, the obtained IR spectra and X-Ray diffraction patterns don't allow any identification. It's the case for $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$. Concerning $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ the few and weak peaks in X-Ray diffraction don't concern neither $\mathrm{P}_{2} \mathrm{O}_{5}$ nor PbO . After the removing of the remaining water molecules, the atomic rearrangement of $\mathrm{M}^{\mathrm{II}} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Pb}\right.$ and Cd$)$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ occurs and leads the crystallization of long-chain polyphosphates $\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}{ }^{26}$ and $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]^{27}$. The latter result is confirmed by chemical analyses, X-ray diffraction (Fig. 1c, 1d, 2c) and IR absorption spectrometry ($\mathbf{F i g} . \mathbf{3 c}, \mathbf{3 d}, \mathbf{4 c}$). In fact, the bands appearing in the IR absorption spectra of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Fig. 3c, 3d, 4c), characterize easily the structure of long-chain polyphosphates $\mathrm{PO}_{3}{ }^{-20,21}$. The intermediate product of the dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, between 773 and 1073 K under atmospheric pressure, is its long chain polyphosphate form $\alpha, \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$. The final products of the dehydration, decomposition and calcination of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, respectively in the ranges $623-923 \mathrm{~K}$ and $1103 \mathrm{~K}-1133 \mathrm{~K}$, under atmospheric pressure, are their long chain polyphosphates $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]^{26}$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}{ }^{28}$ confirmed by X-ray diffraction (Fig. 1d, 2d)
and IR absorption spectrometry (Fig. 3d, 4d). With further increase in temperature, $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ and $\boldsymbol{\beta}\left[\mathbf{C d}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ melt respectively at 946 K and 1153 K .
$\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$ was prepared, by an other route, using the method of Thilo and Grunze ${ }^{29}$. Stoichiometric quantities of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and PbCO_{3} are well ground and mixed, and very progressively heated to 673 K for the purpose of excluding $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and NH_{3}. The heating is then resumed up to 773 K , and this temperature is maintained with intervening grindings until a pure phase is obtained, as checked by X-ray diffractometry and IR absorption Spectrometry. $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ was obtained as polycristalline samples. $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ were obtained as polycristalline samples at respectively 1023 K and 1123 K as described for the case of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$.

Figure 3. IR spectra of the phosphates (a) $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (b) amorphous phase, (c) evolution to $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and (d) $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$

Figure 4. IR spectra of the phosphates (a) $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, (b) amorphous phase, (c) $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$, (d) $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$

Characterization of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right], \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ by IR vibration spectrometry

The IR absorption spectra of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$, $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ are reported in Fig. 3 and 4. Between 1300 and $650 \mathrm{~cm}^{-1}$, the spectra (Fig. 3d, 4c and 4d) show valency vibration bands characteristic of long-chain polyphosphates $\mathrm{PO}_{3}{ }^{-20-22}$. Among these bands we can distinguish :

- The vibration bands of the (OPO) end groups at high frequencies: $1200<v_{\text {as }} \mathrm{OPO}<1300$ cm^{-1} and $1100<v_{\mathrm{s}} \mathrm{OPO}<1170 \mathrm{~cm}^{-1}$;
- The valency vibrations of the (P-O-P) chain groups at : $850<v_{\text {as }} \mathrm{POP}<1050 \mathrm{~cm}^{-1}$ and $650<$ v_{s} POP < $800 \mathrm{~cm}^{-1}$;
- The valency vibrations of the (POP) chain groups are represented in the spectra (Fig. 3d, 4c and 4d) by a strong band at $913 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right], 919 \mathrm{~cm}^{-1}$ for $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and $940 \mathrm{~cm}^{-1}$ for $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ which can be attributed to the $v_{\text {as }}$ POP antisymmetric vibrations. This strong band clearly characterize with no ambiguity the structure of a long-chain polyphosphate $\mathrm{PO}_{3}{ }^{-}$ ${ }^{20-22}$. By the examination of the position, the profile and the intensity of this band which doesn't appear in the IR spectra of the cyclotriphosphates $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ and which is located generally between $850 \mathrm{~cm}^{-1}$ and $940 \mathrm{~cm}^{-1}$, it is then possible to distinguish between cyclotriphosphate $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ and long-chain polyphosphate $\mathrm{PO}_{3}{ }^{-20-22}$.
- Between 600 and $400 \mathrm{~cm}^{-1}$ the spectra (Fig. 3d, 4c and 4d) show bending vibration bands characteristic of long-chain polyphosphates ${ }^{20-22}$. The nature of the vibration corresponding to the different observed bands is given in Table 3.

Table 3 Frequencies $\left(\mathrm{cm}^{-1}\right)$ of IR absorption bands for $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right], \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ and $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$

$\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$	$\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$	$\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$	
v / cm^{-1}	v / cm^{-1}	v / cm^{-1}	vibration
1305	1303		$v_{\text {as }} \mathrm{OPO}^{-}$
1210	1265		
	1223		
1180	1102	1154	$v_{\mathrm{s}} \mathrm{OPO}^{-}$
1140			
1106			
1077	1045	1096	$v_{\text {as }} \mathrm{POP}$
1039	1007	1030	
1013	970	1007	
913	919	940	
780	816	721	$v_{s} \mathrm{POP}$
739	715	666	
706		607	
669			
589	578	563	δ OPO +
558	530	528	ρ OPO
541	497	487	
525	452	435	
510		407	
462			

Thermal behavior. Non isothermal study.

A. $\mathbf{P b}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathrm{O}_{9}\right)_{\mathbf{2}} \mathbf{. 3} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

The two curves corresponding to the ATG and DTG analyses in air atmosphere and at a heating rate $5 \mathrm{~K} . \mathrm{min}^{-1}$ for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are given in Fig. 5. The initial mass is 20 mg . The dehydration of the cyclotriphosphate trihydrate of lead, $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, occurs in two steps each one of them within the temperature ranges $430-463 \mathrm{~K}$ and $512-654 \mathrm{~K}$ respectively. In the thermogravimetric (ATG) curve, the first stage between 430 and 463 K corresponds to the elimination of 0.22 water molecule and the second stage from 512 to 654 K is due to the elimination of 2.78 water molecules.

Figure 5. TGA (ATG-DTG) curves of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $\left(5 \mathrm{~K} \cdot \mathrm{~min}^{-1}\right)$

The derivative of the ATG curve, DTG, of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ under atmospheric pressure and at a heating rate of $5 \mathrm{~K} \cdot \mathrm{~min}^{-1}$ contains five peaks due to the dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The first peak in the domain $430-463 \mathrm{~K}$, at 447 K is due to the departure of 0.22 water molecule. The second, third, fourth and fifth peaks in the range $512-660 \mathrm{~K}$, at respectively $525 \mathrm{~K}, 581 \mathrm{~K}, 632 \mathrm{~K}$ and 659 K are due to the evaporation of 2.78 remaining water molecules. The peaks at 525 K and 581 K are very intensive. It's worth noticing that the amount of water lost and the derived thermodynamic data make sense in view of the reactions with all the intermediate phases and intermediate products. In the first step, the weight loss is weak $\left(0.22 \mathrm{H}_{2} \mathrm{O}\right)$, that's why we observe only one peak in the DTG curve in this step. The reaction, according to Van Wazer ${ }^{25}$, is:

$$
\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left(3 \mathrm{PbO}+3 \mathrm{P}_{2} \mathrm{O}_{5}+2.78 \mathrm{H}_{2} \mathrm{O}\right)_{\text {Amorphous phase }}+0.22 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

In the second step, the weight loss is important $\left(2.78 \mathrm{H}_{2} \mathrm{O}\right)$, that's why we observe four peaks in the DTG curve in this step. The reaction, according to Van Wazer ${ }^{25}$, is:

$$
\left(3 \mathrm{PbO}+3 \mathrm{P}_{2} \mathrm{O}_{5}+2.78 \mathrm{H}_{2} \mathrm{O}\right)_{\text {Amorphous phase }} \longrightarrow 3 \beta \mathrm{~Pb}\left(\mathrm{PO}_{3}\right)_{2}+2.78 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Figure 6. DTA curve of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ at rising temperature (5K.min ${ }^{-1}$)
Fig. 6, which exhibits the differential thermal analysis (DTA) curve of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ under atmospheric pressure and at a heating rate $5 \mathrm{~K} \cdot \mathrm{~min}^{-1}$, reveals five endothermic effects and one exothermic. Four endothermic peaks, at $450 \mathrm{~K}, 544 \mathrm{~K}, 557 \mathrm{~K}$ and 639 K , are due to the departure of water molecules contained in the title compound. The first peak, well pronounced at 450 K , corresponds to the loss of 0.22 water molecule. The second endothermic peak, dedoubled at 544 K , the third at 557 K and the fourth one at 639 K are all due to the removal of 2.78 remaining water molecules. The exothermic peak at 516 K is due to the crystallization of long-chain polyphosphate of lead. This crystallization is confirmed by X-ray diffraction and infrared spectrometry analyses. The last endothermic peak at 946 K is due to the melting point of the long-chain polyphosphate $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$.

The differential scanning calorimetry, DSC, for $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $5 \mathrm{~K} . \mathrm{min}^{-1}$ and under atmospheric pressure shows one exothermic peak at 520 K and five endothermic peaks at $445 \mathrm{~K}, 462 \mathrm{~K}, 607 \mathrm{~K}, 620 \mathrm{~K}$ and 661 K (Fig. 7).

The five endothermic peaks correspond to the dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and are then due to the departure of water molecules. The only exothermic peak at 520 K corresponds to the crystallization of long-chain polyphosphate of lead $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ according to the results of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2}{ }^{20,29}$. In fact, in the results of M. H. Simont-Grange ${ }^{29}$ and K. Sbai ${ }^{20}$, the IR band appearing at $913 \mathrm{~cm}^{-1}$ in the spectrum of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, characterize easily the structure of long chain polyphosphates. This result is confirmed in the DTA curve by an exothermic peak at 516 K . The enthalpy variations of the six peaks described above in the DSC curve are gathered in the Table 4.

Figure 7. Differential scanning calorimetry DSC curve of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $\left(5 \mathrm{~K} \cdot \mathrm{~min}^{-1}\right)$
The enthalpy variations were provided by the computer program. For the crystallization of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$, we have the same temperatures for the exothermic peaks at 516 K for the DTA curve and 520 K for DSC curve. For the dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, we have approximately the same temperatures for the first and last endothermic peaks.

Table 4: Enthalpy variations and characteristic temperatures of the six peaks observed in the DSC curve of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $5 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

$0.092 \mathrm{H}_{2} \mathrm{O}$		$0.129 \mathrm{H}_{2} \mathrm{O}$		$\left[\mathrm{Pb}_{3}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$		$0.434 \mathrm{H}_{2} \mathrm{O}$		$0.462 \mathrm{H}_{2} \mathrm{O}$		$1.44 \mathrm{H}_{2} \mathrm{O}$	
T_{m}	$\Delta \mathrm{H}$										
445	15.187	462	10.125	520	-53.934	607	20.308	620	40.070	661	32.930

$\mathrm{T}_{\mathrm{m}} / \mathrm{K} ; \Delta \mathrm{H} / \mathrm{kJ} . \mathrm{mol}^{-1}$

B. $\mathbf{C d}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{9}}\right)_{\mathbf{2}} \cdot \mathbf{1 4} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

The two curves corresponding to the ATG and DTG analyses in air atmosphere and at a heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$ of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ are given in Fig. 8. The initial mass is 20 mg . The dehydration of the cyclotriphosphate tetradecahydrate of cadmium $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ occurs in three steps in three temperature ranges $345-446 \mathrm{~K}, 446-586 \mathrm{~K}$ and $586-703 \mathrm{~K}$ (Fig. 8). In the thermogravimetric (ATG) curve (Fig. 8), the first stage between 345 and 446 K corresponds to the elimination of 11 water molecules, the second stage from 446 to 586 K is due to the elimination of 2 water molecules and the third stage $586-703 \mathrm{~K}$ corresponds to the elimination of one water molecule.
It is important to mention that the derivative of the ATG curve, DTG, of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ under atmospheric pressure and at a heating rate $10 \mathrm{~K} \mathrm{~min}^{-1}$ (Fig. 8) contains only three peaks due to the dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. The first intensive peak in the domain $345-$ 446 K , observed at 423 K is due to the departure of 11 water molecules. The weak second peak in the domain $446-586 \mathrm{~K}$, observed at 523 K is due to the departure of 2 water molecules and
the third peak in the third range $586-703 \mathrm{~K}$, situated at 675 K is due to the removal of one water molecule.

Figure 8. TGA (ATG-DTG) curves of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $\left(10 \mathrm{~K} . \mathrm{min}^{-1}\right)$

The differential thermal analysis (DTA) curve of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Fig. 9), under atmospheric pressure and at a heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$, reveals one exothermic peak and three endothermic effects. The exothermic peak at 707 K is due to the crystallization of long-chain polyphosphate of cadmium form α. This crystallization, of $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$, is confirmed by Xray diffraction and infrared spectrometry analyses. The first endothermic peak intensive at 421 K corresponds to the loss of 11 water molecules. The second endothermic peak at 1120 K is due to the phase transition from $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ to $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ as proven by X-ray diffraction and infrared spectrometry analyses. The third endothermic peak at 1153 K is rather related to the melting point of the long-chain polyphosphate $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$.

The differential scanning calorimetry (DSC) curve of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, under atmospheric pressure and at a heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$ (Fig. 9), shows three endothermic peaks at $419 \mathrm{~K}, 503 \mathrm{~K}$ and 682 K . All of these peaks correspond to the dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$.

Figure 9. DTA curve of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ at rising temperature ($10 \mathrm{~K} . \mathrm{min}^{-1}$)
The enthalpy variations of the three peaks described above in the DSC curve are gathered in the Table 5. concerning the dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, we have the same temperatures for the endothermic peaks at 421 K for the DTA curve and 419 K for DSC curve (Fig. 10).

Figure 10. Differential scanning calorimetry DSC curve of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ at rising temperature ($10 \mathrm{~K} . \mathrm{min}^{-1}$)

Table 5 Enthalpy variations and characteristic temperatures of the three peaks observed in the DSC curve of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

$11 \mathrm{H}_{2} \mathrm{O}$		$2 \mathrm{H}_{2} \mathrm{O}$		$1 \mathrm{H}_{2} \mathrm{O}$	
T_{m}	$\Delta \mathrm{H}$	T_{m}	$\Delta \mathrm{H}$	T_{m}	$\Delta \mathrm{H}$
419	954.73	503	7.2936	682	38.227

[^0]
Estimation of the thermodynamic functions.

Various equations of kinetic analyses are known such as Kissinger's method ${ }^{30}$, Kissinger-Akahira-Sunose (KAS) ${ }^{31}$, Ozawa ${ }^{32}$, Coats-Redfern ${ }^{33}$ and Van Krevelen et al. ${ }^{34}$ methods. Especially, the Ozawa and KAS equations were well described and widely used in the literature; therefore, these methods are selected in studying the kinetics of thermal dehydration of the title compounds. So, water loss kinetic parameters were evaluated using the Kissinger-Akahira-Sunose (KAS) ${ }^{31}$ and Ozawa ${ }^{32}$ methods, from the curves $\ln \left(\mathrm{v} / \mathrm{T}^{2}{ }_{\mathrm{m}}\right)=$ $f(1 / T m)$ and $\ln (v)=f\left(1 / T_{m}\right)\left(\right.$ Fig. 11, 12, 13 and 14), where v is the heating rate and T_{m} the sample temperature at the thermal effect maximum. The characteristic temperatures at maximum dehydration rates, T_{m}, for the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ are shown in Table 6. The enthalpy variations were provided by the DSC apparatus.

Table 6 Characteristic temperatures at maximum dehydration rates, T_{m} in K , at different heating rates from the DTA curves of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$					
Heating rate v	$3 \mathrm{~K} / \mathrm{min}$	$5 \mathrm{~K} / \mathrm{min}$	$8 \mathrm{~K} / \mathrm{min}$	$10 \mathrm{~K} / \mathrm{min}$	$13 \mathrm{~K} / \mathrm{min}$
First peak	439	450	462	473	480
Second peak	525	544	553	564	568
Third peak	544	557	568	575	602
Fourth peak	625	639	652	667	679
$\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$					
Heating rate v	$5 \mathrm{~K} / \mathrm{min}$	$10 \mathrm{~K} / \mathrm{min}$	$15 \mathrm{~K} / \mathrm{min}$		
One peak	418	420	422		

From these temperatures and according to the Kissinger-Akahira-Sunose (KAS) ${ }^{31}$ and Ozawa ${ }^{32}$ methods, the apparent activation energies of dehydration were calculated for the cyclotriphosphates $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Table 7). For the Kissinger-Akahira-Sunose (KAS) ${ }^{31}$ method, the slope of the resulting straight line of the curve: $\ln \left(\mathrm{v} / \mathrm{T}^{2} \mathrm{~m}\right)=\mathrm{f}(1 / \mathrm{Tm})($ Fig. 11 and 13), equals to $-\mathrm{Ea} / \mathrm{R}$, allows the apparent activation energy to be calculated (Table 7).
Table 7: Activation energy values Ea, pre-exponential factor (A) and correlation coefficient $\left(\mathrm{r}^{2}\right)$ calculated by Ozawa and KAS methods for the dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$

	$\mathbf{P b}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathbf{O}_{\mathbf{9}}\right)_{\mathbf{2}} \mathbf{3} \mathbf{3 H}_{\mathbf{2}} \mathbf{O}$					
Model	Ozawa method			KAS method		
	$\mathrm{Ea} / \mathrm{kJ} . \mathrm{mol}^{-1}$	$\mathrm{~A} \cdot 10^{11} / \mathrm{min}^{-1}$	r^{2}	$\mathrm{Ea} / \mathrm{kJ} . \mathrm{mol}^{-1}$	$\mathrm{~A} .10^{5} / \mathrm{min}^{-1}$	r^{2}
First peak	61.93	13.72	0.985	57.50	7.78	0.974
Second peak	83.74	171.5	0.950	78.98	69.8	0.938
Third peak	73.00	7.423	0.941	67.25	2.68	0.966
Fourth peak	96.55	118.8	0.974	90.71	33.8	0,979

	$\mathbf{C d}_{\mathbf{3}}\left(\mathbf{P}_{\mathbf{3}} \mathbf{O}_{\mathbf{9}}\right)_{\mathbf{2}} \cdot \mathbf{1 4 \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }}$						
Model	Ozawa method			KAS method			
	$\mathrm{Ea} / \mathrm{kJ} . \mathrm{mol}^{-1}$	$\mathrm{~A} .10^{12} / \mathrm{min}^{-1}$	r^{2}	$\mathrm{Ea} / \mathrm{kJ} . \mathrm{mol}^{-1}$	$\mathrm{~A} .10^{5} / \mathrm{min}^{-1}$	r^{2}	
One peak	55.39	1.278	0.978	51.25	8.58	0.972	

Concerning the Ozawa ${ }^{32}$ method, the slope of the resulting straight line on the curve: $\ln (\mathrm{v})=\mathrm{f}(1 / \mathrm{Tm})($ Fig. 12 and 14), equals to $-1.0516 \mathrm{E} /$ R, allows also the apparent activation energy (Table 7) to be calculated by this second way. The equations used for the two methods are the following :

For KAS ${ }^{31}$

$$
\begin{equation*}
\operatorname{Ln}\left(\frac{v}{T^{2}{ }_{m}}\right)=\operatorname{Ln}\left(\frac{A R}{E}\right)-\left(\frac{E}{R}\right)\left(\frac{1}{T_{m}}\right) \tag{1}
\end{equation*}
$$

For Ozawa ${ }^{32} \quad \operatorname{Ln}(v)=\operatorname{Ln}\left(\frac{A R}{1.0516 E}\right)-1.0516\left(\frac{E}{R}\right)\left(\frac{1}{T_{m}}\right)$

The pre-exponential factor or Arrhenius constant (A) can be calculated from both KAS ${ }^{30}$ and Ozawa ${ }^{32}$ methods. The related thermodynamic functions can be calculated by using the activated complex theory (transition state) of Eyring ${ }^{35-37}$. The following general equation can be written ${ }^{36}$:

$$
\begin{equation*}
A=\left(\frac{e \chi k_{B} T_{m}}{h}\right) \exp \left(\frac{\Delta S^{*}}{R}\right) \tag{3}
\end{equation*}
$$

where e is the Neper number $(e=2.7183), \chi$ is the transition factor, which is unity for the monomolecular reaction, k_{B} is the Boltzmann constant ($\left.\mathrm{k}_{\mathrm{B}}=1.3806 \times 10^{-23} \mathrm{~J} . \mathrm{K}^{-1}\right)$, h is Plank's constant ($\mathrm{h}=6.6261 \times 10^{-34} \mathrm{~J} . \mathrm{s}$), Tm is the peak temperature of the DTA curve, R is the gas constant $\left(\mathrm{R}=8.314 \mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ and $\Delta \mathrm{S}^{*}$ is the entropy change of transition state complex or entropy of activation. Thus, the entropy of activation may be calculated as follows:

$$
\begin{equation*}
\Delta S^{*}=R \operatorname{Ln} \frac{A h}{e \chi k_{B} T_{m}} \tag{4}
\end{equation*}
$$

The enthalpy change of transition state complex or heat of activation $\left(\Delta \mathrm{H}^{*}\right)$ and Gibbs free energy of activation $\left(\Delta G^{*}\right)$ of dehydration were calculated according to Eqs. (5) and (6), respectively:

$$
\begin{align*}
& \Delta H^{*}=\mathbf{E}^{*}-\mathbf{R T} \tag{5}\\
& \Delta G^{*}=\Delta H^{*}-\Delta S^{*} \mathbf{T}_{m} \tag{6}
\end{align*}
$$

Where, E^{*} is the activation energy Ea of both KAS^{31} and Ozawa ${ }^{32}$ methods. The values of the activation energies are gathered in Table 7. Thermodynamic functions were calculated from Eqs. (4), (5) and (6) and summarized in Table 8. The negative values of ΔS^{*} from two methods for the dehydration step reveals that the activated state is less disordered compared to the initial state. These ΔS^{*} values suggest a large number of degrees of freedom due to rotation which may be interpreted as a «slow » stage ${ }^{37-39}$ in this step. The positive values of ΔG^{*} at all studied methods are due to the fact that, the dehydration processes are not spontaneous. The positivity of $\Delta \mathrm{G}^{*}$ is controlled by a small activation entropy and a large positive activation enthalpy according to the Eq. 6. The endothermic peaks in DTA data agree well with the positive sign of the activation enthalpy $\left(\Delta \mathrm{H}^{*}\right)$. The estimated thermodynamic functions $\Delta \mathrm{S}^{*}$ and $\Delta \mathrm{G}^{*}$ (Table 8) from two methods are different to some extent due to the different pre-exponential factor of about 10^{6} or 10^{7}. While $\Delta \mathrm{H}^{*}$ (Table 8) exhibits an
independent behavior on the pre-exponential factor as seen from exhibiting nearly the same value.
Table 8: Values of $\Delta \mathrm{S}^{*}, \Delta \mathrm{H}^{*}$ and $\Delta \mathrm{G}^{*}$ for dehydration step of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ calculated according to Ozawa and KAS equations

$\mathbf{P b}_{3}\left(\mathbf{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{3 H} \mathbf{2}_{\mathbf{2}} \mathrm{O}$						
Model	Ozawa method			KAS method		
	$\begin{gathered} \Delta \mathrm{S}^{*} \\ \left(\mathrm{~J} . \mathrm{K}^{-1} . \mathrm{mol}^{-}\right. \\ \left.{ }^{1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}^{*} \\ \left(\mathrm{~kJ} . \mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{S}^{*} \\ \left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$
First peak	-24.83	57.94	69.86	-144.41	53.51	122.82
Second peak	-5.23	79.02	81.99	-127.57	74.62	146.72
Third peak	-31.81	68.00	87.13	-155.13	62.25	155.56
Fourth peak	-9.77	90.91	97.54	-135.73	85.06	176.78
$\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \mathbf{. 1 4 H _ { 2 } \mathrm { O }}$						
Model	Ozawa method			KAS method		
	$\begin{gathered} \Delta \mathrm{S}^{*} \\ \left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \mathrm{S}^{*} \\ \left(\mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \\ \left.{ }^{-}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}^{*} \\ \left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$
One peak	-24.34	51.88	62.16	-142.52	47.74	107.88

Figure 11. $\operatorname{Ln}\left(\mathrm{v} / \mathrm{T}_{\mathrm{m}}{ }^{2}\right)=\mathrm{f}\left(1 / \mathrm{T}_{\mathrm{m}}\right)$ representation of the dehydration thermal effect of the cyclotriphosphate $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Figure 12. $\operatorname{Ln}(v)=f\left(1 / T_{m}\right)$ representation of the dehydration thermal effect of the cyclotriphosphate $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Figure 13. $\operatorname{Ln}\left(v / T_{m}{ }^{2}\right)=f\left(1 / T_{m}\right)$ representation of the dehydration thermal effect of the cyclotriphosphate $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$

Figure 14. $\operatorname{Ln}(\mathrm{v})=\mathrm{f}\left(1 / \mathrm{T}_{\mathrm{m}}\right)$ representation of the dehydration thermal effect of the cyclotriphosphate $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$

Comparison of the thermal behavior of cyclotriphosphates hydrated type $\mathrm{M}_{3}{ }^{\mathrm{II}}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{1 0 H}_{2} \mathrm{O}$ ($\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Mn}$ and Cd) and $\mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}$ with that of $\mathbf{P b}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{3 H}_{\mathbf{2}} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{\mathbf{3}} \mathrm{O}_{9}\right)_{2} \cdot \mathbf{1 4} \mathrm{H}_{\mathbf{2}} \mathrm{O}$.

In our laboratory, until today, the thermal behavior was studied for four cyclotriphosphates hydrated type $\mathrm{M}_{3}{ }_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Mn} \text { and } \mathrm{Cd}\right)^{16,40}$ and $\mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{41}$. It would be useful to compare the thermal behavior of these four cyclotriphosphates with that of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$. For the cyclotriphosphates $\mathrm{M}_{3}{ }^{\mathrm{II}}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Mn} \text { and } \mathrm{Cd}\right)^{16,40}, \mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2}{ }^{41}$, $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, after the removal of a partial quantity of water molecules by thermal dehydration, they all lead to amorphous products in X-ray diffraction and don't exhibit the IR absorption bands characteristic of cyclic phosphates $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$. The final products of the total thermal dehydration, for $\mathrm{Ca}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}^{16,40}, \mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{41}$, $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, are their corresponding long-chain polyphosphates $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Ba}, \mathrm{Pb}\right.$ and Cd$)$ except for $\mathrm{Mn}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}^{16}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}^{16}$ which lead to their corresponding anhydrous cyclotetraphosphates respectively $\mathrm{Mn}_{2} \mathrm{P}_{4} \mathrm{O}_{12}{ }^{16}$ and $\mathrm{Cd}_{2} \mathrm{P}_{4} \mathrm{O}_{12}{ }^{16}$. These results are gathered in Table 9.

Table 9: Comparison of the thermal behaviors of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$ with those of $\mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Ca}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Mn}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .10 \mathrm{H}_{2} \mathrm{O}$

cyclotriphosphates	first step : dehydration	second step : melting or phase transition	last step : melting	References
$\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	Formation of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$ between 593 and 773 K	Melting of $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]$ 946 K		This work
$\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$	Formation of $\alpha\left[\mathrm{Cd}^{2}\left(\mathrm{PO}_{3}\right)_{2}\right]$ between 500 and 1073 K	Formation of $\beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]$ between 830 and 1133 K	Melting of $\beta\left[\mathrm{Cd}^{2}\left(\mathrm{PO}_{3}\right)_{2}\right]$ 1153 K	at

Conclusion

$\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has been synthesized by mixing $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ in aqueous solution and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ has been prepared by the method of ion exchange-resin. The total thermal dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ under atmospheric pressure leads to the longchain polyphosphate, $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$. With further increase in temperature, finally, $\left[\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ melts at 946 K . The thermal dehydration of $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$, under atmospheric pressure, leads to its long chain polyphosphate form $\alpha, \alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ as an intermediate product. By heating at higher temperatures, $\alpha\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ converts to the long-chain polyphosphate form $\beta, \beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty} . \beta\left[\mathrm{Cd}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}$ which is the final product of dehydration, is stable until its melting point at 1153 K . The thermodynamic and kinetic features of the dehydration of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ have been determined. The vibrational spectra of $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}$ were examined and interpreted in the domain of the stretching vibrations of the $\mathrm{P}_{3} \mathrm{O}_{9}$ rings. $\mathrm{Pb}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .14 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Ca}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ba}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ have the same thermal behavior. They all lead to their corresponding long-chain polyphosphates $\left[\mathrm{M}^{\mathrm{II}}\left(\mathrm{PO}_{3}\right)_{2}\right]_{\infty}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Pb}, \mathrm{Cd}, \mathrm{Ca}\right.$ and Ba$)$.

On the contrary, $\mathrm{Mn}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cd}_{3}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ lead to their corresponding cyclotetraphosphates $\mathrm{M}^{\mathrm{II}}{ }_{2} \mathrm{P}_{4} \mathrm{O}_{12}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Cd}\right)$. The results presented in this paper can be added to previous works on thermal transformations of condensed hydrated cyclophosphates.

Experimental Section
 \section*{X-ray diffraction.}

Powder diffraction patterns were registered with a Siemens Chemical analyses diffractometer type D5000 using CuK λ radiation $(\lambda=1.5406 \AA)$. Chemical analyses were performed on a spectrophotometer of atomic absorption type VARIAN AA-475.
Infrared spectroscopy. Spectra were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ with a Perkin-Elmer IR 983G spectrophotometer, using samples dispersed in spectroscopically pure KBr pellets and in the range $600-30 \mathrm{~cm}-1$ with Bruker IFS66V/S spectrophotometer.
Thermal analyses. TGA-DTA coupled were performed using the multimodule 92 Setaram analyzer operating from room temperature up to 1673 K , in a platinum crucible and in atmospheric pressure with sample mass: 20.00 mg , at various heating rates from 1 to $15 \mathrm{~K} / \mathrm{min}$. Differential scanning calorimetry (DSC) was carried out with a Setaram DSC 92 apparatus, in a platinum crucible and in atmospheric pressure with sample mass: 20.00 mg .

References

1 - M. T. Averbuch-Pouchot, A. Durif, Z. Kristallogr. 1972,135, 318-319
2 - M. T. Averbuch-Pouchot, A. Durif, I. Tordjman, Crys. Struct. Comm. 1973, 2, 89-90.
3 - M. T. Averbuch-Pouchot, A. Durif, J. C. Guitel, Acta Crystallogr. 1976, B32, 1533-1535.
4 - M. T. Averbuch-Pouchot, A. Durif, J. C. Guitel, Acta Crystallogr. 1976, B32, 1894-1896.
5 - N. EL-Horr, A. Durif, C. R. Acad. Sci. Ser. II 1983, 296, 1185-1187.
6 - A. Durif, M. Bagieau-Beucher, C. Martin, J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 1972, 95, 146-148.
7 - I. Trodjman, A. Durif, J. C. Guitel, Acta Crystallogr B. 1976, 32, 205-208.
8 - J. C. Grenier, C. Martin, Bull. Soc. Fr. Mineral. Cristallogr. 1975, 98, 107-110.
9 - R. Masse, J. C. Guitel, A. Durif, Acta Crystallogr. 1976, B32, 1892-1894.
10 - M. T. Averbuch-Pouchot, A. Durif, Z. Kristallogr. 1986, 174, 219-224.
11 - A. Durif, M. Brunel-Laügt, J. Appl. Crystallogr. 1976, 9, 154-156.
12 - M. Brunel-Laügt, I. Trodjman, A. Durif, Acta Crystallogr. 1976, B32, 3246-3249.
13 - M. T. Averbuch-Pouchot, A. Durif, Topics in Phosphate Chemistry, World Scientific Publishing Co. Singapore, New Jersey, London, Hong Kong, 1996.
14 - A. Durif, Crystal Chemistry of Condensed Phosphates, Plenum Press, New York, 1995.
15 - K. Sbai, A. Abouimrane, K. El Kababi, S. Vilminot, J. Therm. Anal. Cal. 2002, 68, 109122.

16 - K. Brouzi, A. Ennaciri, M. Harchrras, K. Sbai, Ann. Chim. Sci. Mat. 2003, 28, 159-166.
17 - R. Dumon, Le Phosphore et les Composés Phosphorés, Masson Paris New York Barcelone Milan, 1980.
18 - M. Greenblatt, P. P. Tsai, T. Kodama, S. Tanase, Solid State Ionics 1990, 40/41, 444447.

19 - A. Jouini, A. Durif, C. R. Acad. Sci. Paris. 1983, 297II, 573-575.
20 - K. Sbai, A. Atibi, A. Charaf, M. Radid, A. Jouini, J. Therm. Anal. Cal., 2002, 69, 627645.

21 - W. Bues und, H. W. Gerhke, Anorg. Z. Allgem. Chem. 1956, 288, 301-307.

22 - P. Tarte, A. Rulmont, K. Sbai , M. H. Simonot-Grange. Spectrochimica Acta, 1987, 43A(3), 337-345.
23 - K. Sbai, A. Abouimrane, A. Lahmidi, K. El Kababi, M. Hliwa, S. Vilminot, Ann. Chim. Sci. Mat, 2000, 25(1), S139-S143.
24 - M. H. Simonot-Grange, J. Sol. State Chem. 1983, 46, 76-86.
25 - J. R. Van Wazer, K. A. Holst, J. Am. Chem. Soc. 1950, 72(2), 639-644.
26 - K. H. Jost, Acta Crystallogr. 1964, 17, 1539-1544.
27 - M. Bagieu-Beucher, J. C. Guitel, I. Tordjman, A. Durif, Bull Soc Fr. Mineral Cristallogr. 1974, 97, 481-484.
28 - M. Bagieu-Beucher, M. Brünel-Laügt, J. C. Guitel, Acta Crystallogr. Sect B, 1979, 35, 292-295.
29 - M. Thilo, I. Grunze, Z. Anorg. Allg. Chem. 1957, 90(5-6), 209-223.
30 - H. E. Kissinger, Ann. Chem. 1957, 29, 1702-1709.
31 - T. Akahira, T. Sunose, Res. Report Chiba Inst. Techno. 1971, 16, 22-25.
32 - T. Ozawa, Bull. Chem. Soc. Jpn. 1965, 38, 1881-1886.
33 - A.W. Coats, J.P. Redfern, Nature 1964, 201(4914), 68-69.
34 - D. W. Van Krevelns, P. J. Hoftijzer, Trans. Inst. Chem. Eng. 1954, 32, 5360-5365.
35 - D. Young, Decomposition of solids, Academia Prague, 1984.
36 - J. J. Rooney, J. Mol. Catal. A. Chem., 1995, 96(1), L1-L3'
37 - B. Boonchom, J. Chem. Eng. Data 2008, 53(7), 1533-1541.
38 - L. Vlaev, N. Nedelchev, K. Gyurova, M. Zagorcheva, J. Anal. Appl. Pyrol. 2008, 81(2), 253-262.
39 - P. Noisong, C. Danvirutai, T. Boonchom, Sol. State Sci. 2008, 10(11), 1598-1603.
40 - S. Belaaouad, M. Tridane, H. Chennak, R. Tamani, A. Kenz, M. Moutaabbid, Phos. Res. Bull. 2007, 21, 60-70.
41 - S. Belaaouad, Y. Lahrir, S. Sarhane , M. Tridane, Phos. Res. Bull. 2009, 23, 67-75.
42- A. Kheïreddine, M. Tridane and S. Belaaouad, Powder Diffraction. 2012, 27 (1), 32-35.

[^0]: $\mathrm{T}_{\mathrm{m}} / \mathrm{K} ; \Delta \mathrm{H} / \mathrm{kJ} . \mathrm{mol}^{-1}$

