Synthesis and cytotoxic screening of $\boldsymbol{\beta}$-boswellic acid derivatives

Ratna Kancana Wolfram ${ }^{1}$, Anja Barthel-Niesen ${ }^{1}$, Renate Schäfer ${ }^{1}$, Lucie Heller ${ }^{1}$, Ahmed Al-Harrasi ${ }^{2}$ and René Csuk ${ }^{1, *}$
${ }^{1}$ Martin-Luther-University Halle-Wittenberg, Organic Chemistry Kurt-Mothes Str. 29, Halle (Saale) 06108, Germany
${ }^{2}$ University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Sultanate of Oman

Abstract

Beta-boswellic acids are triterpenoids being generic to the plants of genus boswellia. Although they were shown to exhibit different biological activities, the cytotoxic potential of β-boswellic acid derivatives remained by and large unexploited. To expand the potential of these compounds we developed simple procedures for the interconversion of the most important β-boswellic acids 1-4 and prepared several other derivatives 5-48. These compounds were screened for their cytotoxic activity in sulforhodamine B assays employing several human tumor cell lines and nonmalignant mouse fibroblasts. One of these compounds, a difluoromethylester of 3-O-acetyl-11-keto- β-boswellic acid 23, was cytotoxic for human breast adenocarcinoma cells MCF-7 ($\mathrm{EC}_{50}=6.5 \mu \mathrm{M}$) while being significantly less cytotoxic for the mouse fibroblasts.

Keywords: Frankincense, Boswellic acid, Cytostatic activity.

Introduction

During the last decade, the scientific interest in frankincense has risen considerably. A literature retrieval (SciFinder) searching for the index term „frankincense "showed 3905 hits (until May 2017): While during 1995-2004 only 76 articles dealt with this topic, the number of publications on frankincense increased during the period 2005-2011 to 1341 and grew even larger for the period 2012-2017 (May), and further 2409 papers have been noted for this time span.

Despite the increased interest in frankincense, the number of articles dealing with boswellic acids remained low ${ }^{1-3}$, although boswellic acids account for $25-30 \%$ (by weight) of the resin acids, with ursanederived β-boswellic acids dominating over oleananederived α-boswellic acids.

Analyses of commercial samples reported for β-boswellic acid (-derivatives) up to 10.1% of $\mathbf{B A}(\mathbf{1}$, β-boswellic acid), 6.8% of ABA (2, 3- O-acetyl- β boswellic acid), 5.1% of β-KBA (3, 11-keto- β boswellic acid) and 3.8% of AKBA (4, 3-O-acetyl11 -keto- β-boswellic acid) in frankincense ${ }^{4}$. These values vary highly in practice, and they strongly depend on the quality of the resin, its origin, the time of harvesting and from the species of boswellia (Fig. 1) ${ }^{5}$.

The only source for these natural products (that are also generic to the plants of genus boswellia) is their extraction from the resin; there are no total or partial syntheses for boswellic acids. Because of these limitations, the number of publications dealing with synthetic transformations ${ }^{2,} 6-8$ of boswellic acids remained low compared to the number of publications on frankincense; even less is known about the cytotoxicity of BA and derivatives ${ }^{6,8-13}$.

[^0]
$1 \mathrm{R}=\mathrm{H}(\mathrm{BA})$
$2 \mathrm{R}=\mathrm{Ac}(\mathrm{ABA})$

$3 R=H(K B A)$
$4 R=A c(A K B A)$

Figure 1. Structure of the most important β-boswellic acids.

Results and Discussion

It was the merit of J. Jauch et al. ${ }^{14}$ to provide an easy access to AKBA (4); thereby the resin is extracted, and the crude extract is oxidized and acetylated. This sequence transformed all boswellic acids finally into AKBA (4). While $\mathbf{4}$ is accessible by this approach in good yields, BA (1) and ABA (2) are converted during these operations, again limiting their availability. Hence, we became interested in the transformation of AKBA (4) to ABA (2) as well as of KBA (3) to BA (1).

While the reduction of $\mathbf{4}$ with Pd / C failed to give 2, the hydrogenation of 4 with Pt for 12 h at 85 bar ${ }^{15,16}$ afforded $\mathbf{2}$ in 87% yield quite nicely (Scheme 1). Similarly, hydrogenolysis of $\mathbf{3}$ gave BA (1). This parallel previous findings for the reduction of the carbonyl group in the triterpene glycyrrhetinic acid ${ }^{15,16}$. The synthesis of $\mathbf{1}$ and $\mathbf{2}$ by hydrogenolysis of $\mathbf{3}$ or $\mathbf{4}$ seems more convenient than the previously reported reduction of $\mathbf{3}$ using powdered lithium in HMPA/tert-butanol ${ }^{14,17}$. Deacetylation of 2 or 4 afforded $\mathbf{1}$ or $\mathbf{3}$ in almost quantitative yield; acetylation of $\mathbf{1}$ or $\mathbf{3}$ furnished $\mathbf{2}$ and $\mathbf{4}$, respectively.

Scheme 1. Interconversion of boswellic acids 1-4. a) $\mathrm{PtO}_{2}, \mathrm{HOAc}, \mathrm{H}_{2}, 85 \mathrm{bar}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 87 \%$; b) AcCl , pyridine, DMAP, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 91 \%$; c) NaOH , EtOH, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 98 \%$; d) AcCl, pyridine, DMAP, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 89%; e) NaOH (aq.), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; f) $\mathrm{PtO}_{2}, \mathrm{HOAc}, \mathrm{H}_{2}, 85 \mathrm{bar}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 87 \%$.

From the microwave-assisted reaction of $\mathbf{3}$ with lithium borohydride in diglyme for 1 hour allylic alcohols 5 and 6 (ratio 5:6 =1.7:1) were obtained (Scheme 2). As by-products of this reaction triols 7 and $\mathbf{8}$ were formed. Products $\mathbf{7}$ and $\mathbf{8}$ were also
obtained from the microwave-assisted reduction of 5 (or 6) with LiAlH_{4}. The configuration of the hydroxyl group in 5 and $\mathbf{6}$ (as well as in 7 and $\mathbf{8}$) was determined by NMR. Thus, NOESY spectra of 5 showed the close proximity between $\mathrm{H}-11$ and $\mathrm{H}-9$, while for 6 close
proximity between $\mathrm{H}-11$ and $\mathrm{H}-25$ was established. Triterpenoids carrying a hydroxyl group at C-11 seem to be of interest as enzyme inhibitors, for
example ${ }^{18-21}$ as inhibitors of the microsomal prostaglandin E2 synthase, of cathepsin or of acetylcholinesterase.

Scheme 2. Reductive transformations at positions 11 and 24 of KBA. a) LiBH_{4}, diglyme, microwaves, $140^{\circ} \mathrm{C}, 1$ h: 47% of $\mathbf{5}, 28 \%$ of $\mathbf{6}, 10 \%$ of $\mathbf{7}, 6 \%$ of $\mathbf{8}$; b) IR120 $\mathrm{H}^{+}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91 \%$.

The allylic alcohols 5 and 6, however, were unstable towards traces of acids; and compound $\mathbf{9}^{22,23}$ was formed from $\mathbf{5}$ or $\mathbf{6}$ or from mixtures of $\mathbf{5}$ and $\mathbf{6}$ even upon prolonged standing in CDCl_{3} solutions. Reaction of a methanolic solution of 5 or $\mathbf{6}$ with ion exchange resin IR $120 \mathrm{H}^{+}$for 1 hour at $60^{\circ} \mathrm{C}$ gave pure product 9 in good yields. This compound has previously been isolated from the resin, too (but was most probably an artefact due to the acidic conditions during the isolation) ${ }^{24}$. The facile elimination reaction of 5 and $\mathbf{6}$ parallels previous findings of Rozen et al. for glycyrrhetinic acid derivatives ${ }^{25}$.

Reaction of 4 with thionyl chloride (Scheme 3) followed by treating the intermediate acid chloride with sodium borohydride gave 72% of the alcohol $\mathbf{1 0}$. Compound $\mathbf{1 0}$ is characterized in its ${ }^{1} \mathrm{H}$ NMR spectrum by the presence of signals for diastereomeric $\mathrm{H}-24_{\mathrm{a}, \mathrm{b}}$ (each as a doublet) at $\delta=3.75$ and 3.52 ppm showing a geminal ${ }^{2} J=11.2 \mathrm{~Hz}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $10 \mathrm{C}-24$ was detected at $\delta=65.5 \mathrm{ppm}$.

Oxidation of $\mathbf{1 0}$ with PCC in DCM for 5 h at ambient temperature furnished aldehyde $\mathbf{1 1}$ albeit only in 31% isolated yield; this aldehyde is very unstable and deteriorates quickly. In its ${ }^{13} \mathrm{C}$ NMR spectrum the carbonyl carbon was detected at $\delta=202.4 \mathrm{ppm}$. Reaction of $\mathbf{1 1}$ with hydroxylammonium chloride in dry pyridine ${ }^{26}$ at 50 ${ }^{\circ} \mathrm{C}$ for 3 h gave 78% of the oxime $\mathbf{1 2}$. This oxime showed in its IR spectrum the $\mathrm{C}=\mathrm{N}$ valence vibrational band at $\quad v=1640 \mathrm{~cm}^{-1}$, and in the ${ }^{13} \mathrm{C}$ NMR spectrum C-24 was detected at $\delta=154.5 \mathrm{ppm}$. Furthermore, $\mathbf{1 2}$ was easily reduced ${ }^{27}$ with sodium cyanoborohydride/ TiCl_{3} to afford amine 13

To obtain derivatives of higher lipophilicity, 4 was esterified with several alcohols (Scheme 4). Thus, the reaction of 4 with $\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{MeI}$ gave 95% of methyl ester 14; esterification of $\mathbf{4}$ with thionyl chloride/sodium methanolate gave 14 in 78% isolated yield.

Scheme 3. Synthesis of compounds 10-13. a) SOCl_{2}, reflux, 3 h then $\mathrm{NaBH}_{4}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 72 \%$; b) PCC, DCM, $25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 31 \%$; c) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$, pyridine, $50^{\circ} \mathrm{C}, 3 \mathrm{~h}, 78 \%$; d) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{TiCl}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$, 96%.

Esters were also accessible from the DMAP/diisopropyl carbodiimide (DIC) catalysed reaction of the triterpenoids with alcohols. Thus, reaction of 4 with DIC /EtOH/DMAP gave 69% of the ethyl ester $\mathbf{1 5}$ together with O-acylurea $\mathbf{1 6}(7 \%)$ as a
by-product. Deacetylation of $\mathbf{1 5}$ (or 19, vide infra) under Zemplén conditions gave 17 (or 20 from 19) in good yields; lower yields were observed when these deacetylations were carried out with KOH in methanol.

Scheme 4. Synthesis of different esters derived from AKBA. a) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeI}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 95 \%$; b) SOCl_{2}, NaOMe, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 78 \%$; c) DIC, DMAP, DCM, EtOH, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$ (isolated byproduct $16: 7 \%$); d) $\mathrm{EtOH}, \mathrm{NaOEt}$ (cat.), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 90 \%$; e) n - $\mathrm{BuOH}, \mathrm{NaOBu}$ (cat.), $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 86 \%$; f) DIC, DMAP, DCM, n-Pr-OH, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$; g) DIC, DMAP, DCM, n - $\mathrm{BuOH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 87 \%$; h) SOCl_{2}, DCM, then glycol, 25 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 60 \%$; i) $\mathrm{SOCl}_{2}, \mathrm{DCM}$, then BocNH-($\left.\mathrm{CH}_{2}\right)_{4}-\mathrm{OH}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 58 \%$; j) $\mathrm{ClF}_{2} \mathrm{CCO}_{2} \mathrm{Na}$, glyme, $190{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 71%.

AKBA derived esters carrying medium chain alkyl moieties (such as propyl 18 or butyl ester 19 9]) were easily prepared from 4 in good yields. In addition, several esters (holding additional functional groups, such as 2-(2-hydroxyethoxy)-ethyl ester 21, N-tert-butyloxycarbonylamino-butyl ester 22 or
the difluoromethyl ester 23) were synthesized, too. The latter compound was obtained from the reaction of 4 with sodium chlorodifluoro acetate in glyme at $190^{\circ} \mathrm{C}$ for 3 h . Compound 23 is characterized in its ${ }^{19} \mathrm{~F}$ NMR spectrum by the presence of two diastereomeric fluorine substituents showing signals
at $\delta=-92.7$ and -92.3 ppm with a geminal ${ }^{2} J_{\mathrm{F}, \mathrm{F}}=92$ Hz . The moderate yields observed for some of these reactions can be explained by the formation of sideproducts (not isolated) and subsequent loss of product during column chromatography.

From the reaction of $\mathbf{4}$ with diphenylphosphoryl azide (DPPA)/ NEt_{3} in tert-butanol at $70{ }^{\circ} \mathrm{C}$ for 3 h the isocyanate $24{ }^{28}$ was obtained (Scheme 5). Reaction of $\mathbf{2 4}$ with aq. HCl (conc.) gave access to amine $\mathbf{2 5}{ }^{28}$.

Etherification at position $\mathrm{OH}-\mathrm{C}(3)$ proceeded smoothly, when 26 (from the esterification of $\mathbf{3}$ with cesium carbonate /methyl iodide in THF) ${ }^{29}$ was used as a starting material. Thus, reaction of 26 with $\mathrm{NaH} / \mathrm{MeI}$ gave 91% of $\mathbf{2 7}$, and from the reaction of 26 with di-tert. butyldicarbonate in the presence of magnesium perchlorate ${ }^{30} 86 \%$ of $\mathbf{2 8}$ were obtained.

Scheme 5. Synthesis of derivatives 24-28. a) ${ }^{\mathrm{t}} \mathrm{BuOH}, \mathrm{NEt}_{3}$, DPPA, $70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 59 \%$; b) aq. $\mathrm{HCl}, 60^{\circ} \mathrm{C}, 5 \mathrm{~h}, 72 \%$; c) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{MeI}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 95 \%$; d) $\mathrm{NaH}, \mathrm{THF}$, MeI, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 91 \%$ (of 27); e) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{Boc}_{2} \mathrm{O}, 25$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~d}, 86 \%$ (of $\mathbf{2 8}$).

Acylation of $\mathrm{OH}-\mathrm{C}(3)$ in 26 was easily performed, and (Scheme 6) highly lipophilic 3-
octanoyl 29 or 3-pivaloyl 30 derivatives (both from 26) were obtained in good yields.

Scheme 6. Synthesis of derivatives 29 and 30. a) $\mathrm{H}_{3} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{COCl}$, pyridine, DMAP, DCM, $25{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 98 \%$; b) pivaloyl chloride, DCM, DMAP, pyridine, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$.

Somewhat unexpected products were obtained, however, from some of the reactions of $\mathbf{1}$ or $\mathbf{3}$ with diacid di-chlorides (Scheme 7). The reaction of $\mathbf{1}$ with oxalyl chloride furnished 85% of the 3-oxalyl
derivative 31, and from $\mathbf{3} 84 \%$ of $\mathbf{3 2}$ were obtained. As previously shown, oxalyl derivatives may serve as valuable starting materials for the synthesis of cytotoxic triterpene derivatives ${ }^{31}$. The reactions of $\mathbf{1}$
and $\mathbf{3}$ with malonyl chloride proceeded sluggish, and only 47% of dimeric $\mathbf{3 3}$ and 57% of dimeric $\mathbf{3 4}$ were isolated, respectively.

Higher yields but no dimers were obtained for the reaction of $\mathbf{1}$ with succinic anhydride ${ }^{19}$, and 86% of

35 were obtained. In a similar manner, $\mathbf{3}$ gave under the same conditions 71% of 36 . Yields were similar for the reaction of $\mathbf{1}$ with an excess of glutaric anhydride, and 83% of $\mathbf{3 7}$ were obtained. Under the same conditions 3 gave 75% of 3-O-glutaroylated 38 .

$31 \mathrm{n}=0, \mathrm{R}=\mathrm{H}_{2}$ (from 1
$32 \mathrm{n}=0, \mathrm{R}=\mathrm{O}$ (from 3)
$35 \mathrm{n}=2, \mathrm{R}=\mathrm{H}_{2}$ (from 1)
$36 \mathrm{n}=2, \mathrm{R}=\mathrm{O}$ (from 3)
$37 \mathrm{n}=3, \mathrm{R}=\mathrm{H}_{2}$ (from 1
$38 \mathrm{n}=3, \mathrm{R}=\mathrm{O}$ (from 3)

$33 \mathrm{R}=\mathrm{H}_{2}($ from 1)
$34 \mathrm{R}=\mathrm{O}($ from 3$)$

Scheme 7. Synthesis of acylated compounds 31, 32, 35-38 and formation of dimeric 33 and 34. a) oxalyl chloride, THF, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$ (of $\mathbf{3 1}$); b) oxalyl chloride, THF, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 84 \%$ (of $\mathbf{3 2}$); c) malonyl chloride, THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~min}, 47 \%$ (of $\mathbf{3 3}$); d) malonyl chloride, THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~min}, 57 \%$ (of $\mathbf{3 4}$); e) succinic anhydride, NEt_{3}, DMAP, $25^{\circ} \mathrm{C}, 1 \mathrm{~d}, 86 \%$ (of 35); f) succinic anhydride, NEt_{3}, DMAP, $25^{\circ} \mathrm{C}, 1 \mathrm{~d}, 71 \%$ (of $\mathbf{3 6}$); g) glutaric anhydride, NEt_{3}, DMAP, $25^{\circ} \mathrm{C}, 1 \mathrm{~d}, 83 \%$ (of 37); h) glutaric anhydride, NEt_{3}, DMAP, $25^{\circ} \mathrm{C}, 1 \mathrm{~d}, 75 \%$ (of 38).

Reaction of 3,4,5-O-tri-benzyl-galloyl chloride 39, obtained from the benzylation of gallic acid followed by its conversion to the corresponding benzoyl chloride by treatment with oxalyl chloride/DMF (cat.) in DCM) ${ }^{32}$ with $\mathbf{1}$ and $\mathbf{3}$ (Scheme 8) gave derivatives $\mathbf{4 0}$ and 41, respectively. Hydrogenation of $\mathbf{4 0}$ and $\mathbf{4 1}$ in the presence of Pd / C (10%) for several hours furnished products 42 and 43 , respectively.

Similarly, trans-cinnamic acid was converted into its chloride $\mathbf{4 4}$ whose reaction with 26 gave 73% of 45. From the reaction of $\mathbf{4 6}$ with $\mathbf{2 6} 69 \%$ of $\mathbf{4 7}$ were obtained. Deprotection of 47 with tetrakistriphenyl palladium and morpholine ${ }^{33}$ yielded 78% of 48 .

Compounds 5-48 were screened for their cytotoxic activity in sulforhodamine B assays ${ }^{34}$ using a panel of different human tumor cell lines as well non-malignant mouse fibroblasts (NIH 3T3) using betulinic acid as a standard. Betulinic acid is generally regarded as an ideal standard when comparing triterpenoids and their cytotoxic activity. The results from these assays are compiled in Table 1. Except for 23, none of the compounds gave EC_{50} values smaller than $10 \mu \mathrm{M}$. The reason for the high activity of $\mathbf{2 3}$ for MCF7 breast adenocarcinoma cells remains unclear and will be subject to subsequent investigations. The differences in the EC_{50} values of the other compounds are too small (and their cytotoxic activity is too low) to deduce reliable structure-activity relationships.
1 or $3+$

39

$c\left(\begin{array}{rl}40 R^{1} & =H_{2}, R^{2}=\mathrm{Bn} \\ 41 \mathrm{R}^{1} & =\mathrm{O}, \mathrm{R}^{2}=\mathrm{Bn} \\ 42 \mathrm{R}^{1} & =\mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{H} \\ 43 \mathrm{R}^{1} & =\mathrm{O}, \mathrm{R}^{2}=\mathrm{H}\end{array}\right) \mathrm{d}$

$45 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$\left.\begin{array}{rl}47 \mathrm{R}^{1} & =\mathrm{R}^{2}=\mathrm{O} \text {-allyl } \\ 48 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OH}\end{array}\right) \mathrm{g}$

Scheme 8. Synthesis of derivatives 40-48. a) 39, pyridine, $25^{\circ} \mathrm{C}, 2 \mathrm{~d}, 63 \%$ (of 40); b) 39, pyridine, DCM, DMAP, $25^{\circ} \mathrm{C}, 2 \mathrm{~d}, 69 \%$ (of 41); c) Pd/C (10%), $1 \mathrm{~atm} \mathrm{H}_{2}$, THF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 87 \%$ (of 42); d) Pd/C (10%), 1 atm H_{2}, THF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 81 \%$ (of 43); e) 44, DCM, DMAP, pyridine, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 73 \%$ (of 45); f) 46, DCM, DMAP, pyridine. $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$ (of 47); g) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, morpholine, $\mathrm{DCM}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 78 \%$ (of 48).

Conclusion

Although β-boswellic acids exhibit different biological activities, the cytotoxic potential of β boswellic acid derivatives remained unexploited. While AKBA (4) can easily be accessed from the resin, β-boswellic acid $\mathbf{1 - 3}$ could be obtained from the resin up to now by exhaustive chromatography purification only. We herein expanded the potential of these compounds by developing simple procedures for the interconversion of the most important β boswellic acids 1-4. Several derivatives 5-48 were prepared and screened for their cytotoxic activity in sulforhodamine B assays employing several human tumor cell lines and non-malignant mouse fibroblasts. As a result, 25 of these compounds showed EC50 values $<30 \mu \mathrm{M}$. However, one of these compounds, a difluoromethylester of 3-O-acetyl-11-keto- β -
boswellic acid 23 was cytotoxic for human breast adenocarcinoma cells MCF-7 $\left(\mathrm{EC}_{50}=6.5 \mu \mathrm{M}\right)$ while being significantly less cytotoxic for the mouse fibroblasts.

Acknowledgements

We like to thank Dr. D. Ströhl and his team for the NMR spectra, and Dr. R. Kluge for measuring the MS spectra. The optical rotations were recorded by Mrs U. Lammel and Mrs J. Wiese, MSc.; the microanalyses were measured by Mrs. U. Lammel and Mrs J. Pech. Preliminary SRB assays were performed by Dr. A. Barthel. The cell lines were kindly provided by Dr Th. Müller (Dep. of Haematology/Oncology, Martin-Luther Universität Halle-Wittenberg). The authors declare no conflict of interests.

Table 1: Cytotoxicity of selected compounds (EC_{50} values in $\mu \mathrm{M}$ from SRB assays after 96 hours of treatment; the values are averaged from three independent experiments performed each in triplicate; confidence interval CI $=95 \%$, cut-off of the assay $30 \mu \mathrm{M}$); standard: betulinic acid). Human cancer cell lines: HT29 (colorectal adenocarcinoma), MCF7 (breast adenocarcinoma), and nonmalignant mouse fibroblast NIH 3T3.

Compound	HT-29	MCF7	NIH 3T3
3	>30	> 30	> 30
4	19.3 ± 2.4	17.4 ± 1.1	26.4 ± 3.0
5	14.2 ± 2.0	13.9 ± 2.3	19.2 ± 2.5
6	16.1 ± 1.7	17.4 ± 2.0	18.7 ± 1.4
7	>30	> 30	> 30
8	>30	>30	>30
9	> 30	> 30	> 30
10	24.4 ± 0.9	19.3 ± 2.1	21.1 ± 1.7
14	18.1 ± 0.7	18.9 ± 1.4	16.2 ± 2.2
15	17.3 ± 2.4	19.2 ± 0.8	15.1 ± 2.6
17	17.4 ± 2.0	19.7 ± 1.2	21.2 ± 1.5
18	15.2 ± 1.3	18.4 ± 2.7	29.0 ± 1.7
19	22.1 ± 0.5	14.5 ± 2.3	18.7 ± 1.3
20	22.0 ± 1.5	14.8 ± 1.7	19.3 ± 1.1
21	16.1 ± 1.9	19.3 ± 1.6	22.2 ± 1.2
22	15.1 ± 1.1	13.7 ± 2.2	12.0 ± 2.9
23	28.2 ± 2.9	6.5 ± 0.9	17.4 ± 2.0
26	18.4 ± 2.0	29.2 ± 3.0	> 30
27	21.2 ± 3.1	19.5 ± 2.6	27.2 ± 2.4
28	17.4 ± 1.8	24.9 ± 2.0	21.9 ± 2.1
29	19.1 ± 2.5	27.6 ± 1.5	26.2 ± 3.1
30	16.2 ± 2.6	19.9 ± 3.1	17.3 ± 1.6
31	> 30	> 30	> 30
32	29.4 ± 1.7	28.3 ± 1.2	27.9 ± 1.5
33	>30	> 30	>30
34	>30	>30	>30
35	>30	> 30	>30
36	25.2 ± 3.0	17.3 ± 1.5	26.4 ± 2.2
37	>30	> 30	> 30
38	24.8 ± 2.8	19.3 ± 1.4	19.1 ± 2.5
42	24.1 ± 2.4	21.3 ± 1.7	27.4 ± 1.6
43	19.7 ± 1.1	18.7 ± 1.7	25.5 ± 2.0
45	21.9 ± 1.5	24.1 ± 2.6	28.1 ± 1.7
48	19.2 ± 1.9	16.2 ± 1.1	17.0 ± 1.9
betulinic acid	14.4 ± 0.7	10.2 ± 1.8	16.1 ± 1.1

Experimental

Melting points are uncorrected (Leica hot stage microscope), NMR spectra were recorded using the Varian spectrometers Gemini 2000 or Unity 500 (δ given in ppm, J in Hz), MS spectra were taken on a Finnigan MAT LCQ 7000 (electrospray, voltage 4.5 kV , sheath gas nitrogen) instrument. The optical
rotation was measured on a Perkin-Elmer polarimeter at $20^{\circ} \mathrm{C}$. Analytical TLC was performed on silica gel (Merck 5554), and purification of the compounds was done by preparative column chromatography (silica gel, Merck 230-400 mesh). Elemental analyses were performed on a Vario EL (CHNS). The solvents were dried according to usual procedures. The purity of the compounds was determined by HPLC and found to be
> 97%. Frankincense was bought from different commercial suppliers in bulk quantities. The SRB assays were performed as previously reported ${ }^{6,8,34}$. NMR assignments were in full agreement with data
previously published. ${ }^{6-8,}{ }^{14,35}$ Figure 2 shows the most important C,H-couplings obtained from HMBC experiments for compound 4.

Figure 2. Most important C,H-coupling from HMBC experiments for compound 4.

β-Boswellic acid [β-BA, (1)]

From 2

Compound $2(0.5,0.80 \mathrm{mmol})$ was stirred at $25^{\circ} \mathrm{C}$ with aq. sodium hydroxide solution ($0.5 \mathrm{~m}, 15 \mathrm{~mL}$) overnight. Usual workup followed by chromatography (silica gel, hexane/diethyl ether, 3:1, $+0.1 \%$ of acetic acid) yielded $\mathbf{1}(340 \mathrm{mg}, 93 \%)$ as a colorless solid; m.p. 233-235 ${ }^{\circ} \mathrm{C}$ (lit.: 232-235 ${ }^{\circ} \mathrm{C}{ }^{14}$), $[\alpha]_{\mathrm{D}}=+109.3^{\circ}\left(c=0.85, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $+86^{\circ}(c=0.54$, $\left.\mathrm{CHCl}_{3}\right)^{14}$).

From 3:
In an autoclave (Parr, glass insert) to a solution of $\mathbf{3}$ $(2.0 \mathrm{~g}, 4.25 \mathrm{mmol})$ in acetic acid $(75 \mathrm{~mL}) \mathrm{PtO}_{2}(0.5 \mathrm{~g}$, 2.2 mmol) was added, and the mixture was hydrogenated for 12 h at 85 bar. The catalyst was filtered off (over a short path of silica gel), the solvent was evaporated under diminished pressure, and the crude product was purified by chromatography (silica gel, hexane/ diethylether, $3: 1,+0.1 \%$ of acetic acid) to yield $\mathbf{1}(1.68 \mathrm{~g}, 87 \%)$ as a colorless solid; m.p. 234$236{ }^{\circ} \mathrm{C}$ (lit.: 232-236 ${ }^{\circ} \mathrm{C}{ }^{14}$), $[\alpha]_{\mathrm{D}}=+107.9^{\circ}(c=0.9$, CHCl_{3}) (lit.: $\left.+86^{\circ}\left(c=0.54, \mathrm{CHCl}_{3}\right)^{14}\right)$.

β-3-O-Acetyl-boswellic acid [β-ABA, (2)]

From 1:
Acetylation of $1(2.0 \mathrm{~g}, 4.38 \mathrm{mmol})$ in dry pyridine $(20 \mathrm{~mL})$ in the presence of DMAP $(98 \mathrm{mg}, 0.8 \mathrm{mmol})$ with acetyl chloride ($0.5 \mathrm{~g}, 6.37 \mathrm{mmol}$) for 6 h at 25 ${ }^{\circ} \mathrm{C}$ followed by usual aq. work-up gave $2(1.98 \mathrm{~g}$, 91%) as a colorless solid; m.p. $256-258{ }^{\circ} \mathrm{C}$ (lit.: 251$\left.253{ }^{\circ}{ }^{\circ}{ }^{14}\right),[\alpha]_{\mathrm{D}}=+59.3^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $+54^{\circ}$ $\left.\left(c=1.0, \mathrm{CHCl}_{3}\right)^{14}\right)$.

From 4:
Following the procedure for the synthesis of $\mathbf{1}$, by hydrogenolysis of $\mathbf{4}(1.88 \mathrm{~g}, 4.0 \mathrm{mmol})$ compound 2 $(1.69 \mathrm{~g}, 87 \%)$ was obtained as a colorless solid; m.p.

255-257 ${ }^{\circ} \mathrm{C}$ (lit.: 251-253 $\left.{ }^{\circ} \mathrm{C}{ }^{14}\right]$), $[\alpha]_{\mathrm{D}}=+58.7^{\circ}$ $\left(c=0.75, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $\left.+54^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)^{14}\right)$.
(3 $\alpha, 4 \beta$) 3-Hydroxy-11-oxo-urs-12-en-24-oic acid (= 11-keto- β-boswellic acid) [KBA, (3)]
AKBA ($\mathbf{4}, 10.0 \mathrm{~g}, 19.5 \mathrm{mmol}$) was dissolved in ethanol (200 mL) and an aq. solution of sodium hydroxide ($4 \mathrm{~m}, 100 \mathrm{~mL}$) was added. After stirring at $25^{\circ} \mathrm{C}$ for 12 h , the pH was adjusted (aq. HCl), the product was extracted with $\mathrm{CHCl}_{3}(5 \times 100 \mathrm{~mL})$, and the crude product was purified by chromatography (silica gel, hexane/ethyl acetate, 98:2) to afford pure KBA in almost quantitative yield ($9.25 \mathrm{~g}, 98 \%$) as a colorless solid; mp 192-195 ${ }^{\circ} \mathrm{C}$ (lit.: 194-195 ${ }^{\circ} \mathrm{C}^{14}$); $[\alpha]_{\mathrm{D}}=+118.2^{\circ}\left(c=3.72, \mathrm{CHCl}_{3}\right)$, lit.: $+121^{\circ}(c=1.11$, $\left.\mathrm{CHCl}_{3}\right)^{14}$).

3-O-Acetyl-11-keto- β-boswellic acid [AKBA, (4)]

By isolation from frankincense
AKBA was isolated following a modified Jauch's procedure ${ }^{14}$ and obtained as a colorless solid; m.p. 268-270 ${ }^{\circ} \mathrm{C}$ (lit.: 271-276 ${ }^{\circ} \mathrm{C}{ }^{14}$), $[\alpha]_{\mathrm{D}}=+81.1^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $\left.+82\left(c=1.25, \mathrm{CHCl}_{3}\right)^{14}\right)$.

From 3
Acetylation of $\mathbf{3}(2.0 \mathrm{~g}, 3.90 \mathrm{mmol})$ as described above for the synthesis of $\mathbf{2}$ from $\mathbf{1}$ gave $\mathbf{4}(1.63 \mathrm{~g}$, 89%) as a colorless solid; m.p. 269-272 ${ }^{\circ} \mathrm{C}$ (lit.: 271$\left.276{ }^{\circ} \mathrm{C}^{14}\right),[\alpha]_{\mathrm{D}}=+82.5^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $+82^{\circ}$ $\left.\left(c=1.25, \mathrm{CHCl}_{3}\right)^{14}\right)$.
(3 $\alpha, \quad 4 \beta, 11 \beta$) 3,11-Dihydroxy-urs-12-en-24-oic acid (5), ($3 \alpha, 4 \beta, 11 \alpha$) 3,11-dihydroxy-urs-12-en24 -oic acid (6), ($3 \alpha, 4 \beta, 11 \beta$) urs-12-en-3,11,24triol (7), (3 $\alpha, 4 \beta, 11 \alpha$) urs-12-en-3,11,24-triol (8)

A suspension of lithium borohydride $(0.11 \mathrm{~g}, 5.0$ $\mathrm{mmol})$ and KBA $(0.47 \mathrm{~g}, 1.00 \mathrm{mmol})$ was allowed to react in the microwave (Anton Paar, Monowave, 140 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$). For work-up the mixture was carefully diluted with ice-water; extraction with diethylether and chromatography (silica gel, hexane/ diethylether, $1: 1,+0.1 \%$ acetic acid) gave 5 ($140 \mathrm{mg}, 47 \%$), 6 (82 $\mathrm{mg}, 28 \%), 7(46 \mathrm{mg}, 10 \%)$ and $\mathbf{8}(27 \mathrm{mg}, 6 \%)$.

Data for 5: colorless solid; m.p. $124-127^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$: $+123.1^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 500 \mathrm{MHz}$): $\delta=5.32(d, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.47$ ($t, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 3.99 $(t, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.29(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.08(m$, $1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.94$ ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$), 1.80 ($m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}), 1.74$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.65 ($m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-7 \mathrm{a}$), 1.55 ($m, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-5 . \mathrm{H}-9$), 1.45 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.43 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.39 ($m, 3 \mathrm{H}, \mathrm{H}-18 . \mathrm{H}-19, \mathrm{H}-21 \mathrm{~b}$), 1.34 ($m, 3 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.32 ($s, 3 \mathrm{H}, \mathrm{H}-26$), $1.29(s, 3 H, H-23), 1.13$ ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), $1.10(\mathrm{~s}, 3 \mathrm{H}$, H-27), 1.07 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.95 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.91 ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.87 ($s, 3 \mathrm{H}, \mathrm{H}-28), 0.83$ ($d, J=5.9 \mathrm{~Hz}$, 3H, H-29) ppm;
${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta=180.0(\mathrm{C}-24)$, 142.2 (C-13), 131.5 (C 12), 71.7 (C-3), 66.6 (C-11), 60.9 (C-18), 53.7 (C-9), 51.5 (C-5), 48.5 (C-4), 44.3 (C-14), 43.1 (C-22), 41.7 (C-8), 41.2 (C-19), 41.3 (C-20), 40.4 (C-10), 35.3 (C-1), 35.6 (C-17), 35.3 (C-7), 32.8 (C-21), 30.5 (C-28), 29.6 (C-16), 29.1 (C-15), 28.0 (C-2), 25.7 (C-23), 23.8 (C-27), 22.1 (C-30), 22.0 (C-6), 20.5 (C-26), 18.6 (C-29), 17.6 (C-25) ppm;
MS (ESI, MeOH): $m / z=473.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}$ (472.70): C 76.23. H 10.24; found: C 76.11, H 10.42.

Data for 6: m.p. $165-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+59.3^{\circ}(c=0.9$, CHCl_{3};
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right): \delta=5.20(d, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.20(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 3.99$ ($b s, 1 \mathrm{H}, \mathrm{H}-3$), 2.13 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-16 \mathrm{a}$), 1.90 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.80 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-$ 6a, H-9), 1.65 ($m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-5$), 1.56 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.43 ($m, 8 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-21 \mathrm{~b}$, $\mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.29 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.23 ($b s, 4 \mathrm{H}, \mathrm{H}-$ 15a, H-27), 1.16 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-25$), 0.95 ($b s, 5 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20, \mathrm{H}-30$), 0.92 ($d, J=6.2 \mathrm{~Hz}$, 3H, H-29), 0.85 ($s, 3 \mathrm{H}, \mathrm{H}-28$) ppm;
${ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right): ~ \delta=180.1$ (C-24), 142.0 (C-13), 132.9 (C-12), 71.7 (C-3), 69.5 (C-11), 60.1 (C-18), 55.6 (C-9), 50.8 (C-5), 49.1 (C-4), 45.1 (C-8), 44.3 (C-14), 43.2 (C-22), 41.3 (C-19), 41.2 (C-20), 40.4 (C-10), 37.9 (C-1), 36.0 (C-7), 35.7 (C-17), 33.1 (C-21), 30.0 (C-28), 29.9 (C-16), 28.3 (C-15), 28.1 (C-2), 26.0 (C-23), 24.2 (C-27), 22.7 (C-30), 21.8 (C-6), 19.6 (C-26), 18.7 (C-29), 15.7 (C25) ppm;

MS (ESI, MeOH): $m / z=473.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}$ (472.70): C 76.23. H 10.24; found: C 75.97. H 10.39.

Data for 7: amorphous solid; $[\alpha]_{\mathrm{D}}=+58.1^{\circ}(c=0.3$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6} .500 \mathrm{MHz}\right): \delta=5.29(d, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.47(m, 1 \mathrm{H}, \mathrm{H}-11), 3.81(b s, 1 \mathrm{H}$, H-3), $3.74(d, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24 \mathrm{~b}), 3.44(d, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24 \mathrm{a}), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.98$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.90(m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.79(m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}), 1.67$ ($m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-7 \mathrm{a}$), 1.56 ($m, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$, H-6b, H-9), 1.47 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.41 ($m, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-$ 18, H-19, H-21b, H-22a), 1.32 ($m, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}$, $\mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.27 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.09 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.05 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.03 ($m, 2 \mathrm{H}, \mathrm{H}-15 \mathrm{a}, \mathrm{H}-16 \mathrm{~b}$), 0.95 ($b s, 4 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-30$), $0.85(s, 3 \mathrm{H}, \mathrm{H}-28), 0.82(d, J=$ $5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm} ;$
${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta=141.8(\mathrm{C}-13)$, 131.8 (C-12), 71.4 (C-3), 66.8 (C-11), 67.2 (C-24), 60.5 (C-18), 54.3 (C-9), 52.1 (C-5), 44.6 (C-4), 44.3 (C-14), 43.1 (C-22), 41.7 (C-8), 41.2 (C-19), 41.1 (C-20), 39.8 (C-10), 35.4 (C-17), 35.3 (C-7), 34.8 (C-1), 32.8 (C-2), 30.1 (C-28), 29.7 (C-16), 29.6 (C-15), 27.2 (C-2), 24.0 (C-27), 23.8 (C-23), 22.6 (C-30), 20.6 (C-6), 20.3 (C-26), 19.9 (C-25), 18.7 (C-29) ppm;
MS (ESI, MeOH): $m / z=459.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$ (458.72): C 78.55, H 10.99; found: C 78.40, H 11.13.

Data for 8: amorphous solid; $[\alpha]_{\mathrm{D}}=+50.4^{\circ}(c=0.2$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right): \delta=5.21(d, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 4.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-11$), 3.79 ($\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-$ 3), 3.72 ($d, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24 \mathrm{~b}$), 3.45 ($d, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-24 \mathrm{a}$), 2.07 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.98 ($m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}), 1.89(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.76(m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-9$, $\mathrm{H}-15 \mathrm{~b}), 1.55$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-7 \mathrm{a}$), 1.43 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$, H-5, H-6a, H-18, H-19, H-21b, H-22a), 1.34-1.23 ($m, 3 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}), 1.21$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-27$), 1.12 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.05 ($s, 6 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-26), 1.00(m, 1 \mathrm{H}$, H-15a), 0.92 ($b s, 5 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20, \mathrm{H}-30$), 0.90 (d, J $=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29), 0.81(s, 3 \mathrm{H}, \mathrm{H}-28) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (acetone-d $\left.{ }_{6}, 125 \mathrm{MHz}\right): \delta=142.1(\mathrm{C}-13)$, 132.2 (C-12), 71.1 (C-3), 69.5 (C-11), 67.1 (C-24), 60.0 (C-18), 565 (C-9), 51.2 (C-5), 45.0 (C-8), 44.7 (C-4), 43.6 (C-14), 43.1 (C-22), 41.5 (C-20), 41.3 (C-19), 39.9 (C-10), 37.1 (C-1), 36.2 (C-7), 35.6 (C-17), 32.6 (C-21), 30.1 (C-28), 29.9 (C-16), 28.2 (C-15), 27.3 (C-2), 24.4 (C-27), 24.0 (C-23), 22.8 (C-30), 20.1 (C-6), 19.3 (C-26), 18.7 (C-29), 18.2 (C-25) ppm;
MS (ESI, MeOH): $m / z=459.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$ (458.72): C 78.55, H 10.99; found: C 78.38, H 11.17.

9,11-Dehydro- β-boswellic acid (9)

To a solution of 5 or $6(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ in methanol, ion exchange resin IR $120 \mathrm{H}^{+}$was added, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . Filtration followed by usual workup and chromatography (silica gel, hexane/ diethylether, $1: 1,+0.1 \%$ acetic acid) gave 9 ($87 \mathrm{mg}, 91 \%$) as a colorless solid; m.p. 231$234{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}:+339.7^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.67(d, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-11), 5.45(d, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.07(t, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.26$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.02 ($m, 1 \mathrm{H}, \mathrm{H}-$ 16a), 1.91 ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$), 1.78 ($m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, $\mathrm{H}-6 \mathrm{a}$), 1.67 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-7 \mathrm{a}$), 1.59 ($d d, J=$ $12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 1.48$ ($m, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-22 \mathrm{a}$), 1.43-1.39 ($m, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-21 \mathrm{~b}$), 1.38 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.35-1.21 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.20 ($s, 3 \mathrm{H}$, H-26), 1.11 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.07 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 0.95 ($b s, 8 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20, \mathrm{H}-27, \mathrm{H}-30$), 0.84 ($s, 3 \mathrm{H}, \mathrm{H}-$ 28), 0.81 ($d, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm ;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .125 \mathrm{MHz}\right): \delta=182.7(\mathrm{C}-24), 152.6$ (C-9), 141.6 (C-13), 123.1 (C-12), 116.3 (C-11.), 70.1 (C-3), 57.2 (C-18), 47.0 (C-4), 46.2 (C-5), 43.4 (C-8), 41.4 (C-22), 40.5 (C-14), 39.3 (C-20), 39.3 (C-10), 39.1 (C-19), 33.5 (C-17), 32.5 (C-1), 31.7 (C-7), 31.4 (C-21), 28.5 (C-28), 28.2 (C-16), 26.2 (C-15), 27.2 (C-2), 24.0 (C-23), 23.1 (C-25), 21.5 (C-26), 21.5 (C-30), 19.5 (C-6), 17.4 (C-27), 17.1 (C-29) ppm;
MS (ESI, MeOH): $m / z=455.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3}$ (454.68): C 79.24, H 10.19; found: C 79.02, H 10.34 .
($3 \alpha, 4 \beta$) 3-Acetoxy-11-oxo-urs-12-en-24-ol (10)
A solution of $4(2.0 \mathrm{~g}, 4.0 \mathrm{mmol})$ and thionyl chloride $(10 \mathrm{~mL})$ was heated for 3 h at $90^{\circ} \mathrm{C}$. The volatiles were removed under reduced pressure, and the residue was dissolved in dry THF (50 mL). Sodium borohydride ($606 \mathrm{mg}, 16.0 \mathrm{mmol}$) was added, and stirring at $25^{\circ} \mathrm{C}$ was continued overnight. After usual aq. work-up, extraction with diethyl ether and chromatography (silica gel, hexane, 7:3) $\mathbf{1 0}(1.43 \mathrm{~g}$, 72%) was obtained as colorless solid; m.p. 211$213^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=48.4^{\circ}\left(c=4.48, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.02(d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.75(d, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-24), 3.52$ ($d, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24$), 2.53 (virt. $d t, J=3.3,3.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.42(s, 1 \mathrm{H}$, H-9), 2.08 (virt dt, J=13.7, 5.0, $13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.06 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.91 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 1.86 (virt. dt, $J=13.7,5.0 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.66(m, 1 \mathrm{H}$, H-7a), 1.62 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.58 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.52 ($d d, J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.40 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 1.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-19$), 1.33 ($s, 3 \mathrm{H}, \mathrm{H}-27$), $1.30(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}$), 1.26 ($m, 1 \mathrm{H}, \mathrm{H}-5,1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.20$ ($m, 1 \mathrm{H}, \mathrm{H}-$ 15b), 1.14 ($s, 6 \mathrm{H}, \mathrm{H}-25, \mathrm{H}-26$), 0.99 (virt. $d t, J=13.7$, $2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.97(s, 3 \mathrm{H}, \mathrm{H}-23), 0.93$ ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.92 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20$), 0.80 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.6(\mathrm{C}-11), 170.6$ (C-31), 165.9 (C13), 130.3 (C-12), 73.3 (C-3), 65.5 (C-24), 61.4 (C-9), 59.0 (C-18), 50.3 (C-5), 45.2 (C-8), 43.6 (C-14), 42.2 (C-4), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 36.7 (C-10), 34.3 (C-1), 33.9 (C-17), 33.1 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 22.7 (C-2), 21.8 (C-23), 21.3 (C-30), 21.1 (C-32), 20.6 (C-27), 18.4 (C-26), 17.7 (C-6), 17.4 (C-29), 16.8 (C-25) ppm; MS (ESI, $\mathrm{MeOH}): m / z=499.6\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for
$\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ (498.74): C 77.06, H 10.10; found: C 76.87, H 10.31 .

($3 \alpha, 4 \beta$) 3-Acetoxy-11-oxo-urs-12-en-24-al (11)

To a solution of $\mathbf{1 0}(900 \mathrm{mg}, 1.81 \mathrm{mmol})$ in dry DCM (20 mL) PCC ($977 \mathrm{mg}, 4.53 \mathrm{mmol}$) was added, and stirring at $25{ }^{\circ} \mathrm{C}$ was continued for 5 h . Usual aq. work-up, extraction with DCM followed by chromatography (silica gel, hexanes/ethyl acetate, 9:1) gave $11(280 \mathrm{mg}, 31 \%)$ as a white solid; m.p. 147 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=49.2^{\circ}\left(c=4.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.69(s, 1 \mathrm{H}, \mathrm{H}-24), 5.54(s, 1 \mathrm{H}, \mathrm{H}-$ 12), 5.31 ($d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.51 ($d d d$, $J=13.3,3.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.43(s, 1 \mathrm{H}, \mathrm{H}-9)$, 2.09 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.07 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.88 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}), 1.78$ ($m, 2 \mathrm{H}, \mathrm{H}-6$), 1.72 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.63 ($m, 2 \mathrm{H}, \mathrm{H}-2$), 1.53 ($d d, J=10.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), $1.51(d d, J=2.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.49(m, 1 \mathrm{H}, \mathrm{H}-$ 7b), 1.47 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}), 1.40$ ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), $1.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-27), 1.25(m, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}), 1.20$ ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.17$ ($s, 3 \mathrm{H}$, $\mathrm{H}-26), 1.06$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.00 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 0.99 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.92 ($m, 1 \mathrm{H}, \mathrm{H}-$ 20), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.4$ (C-24), 199.1 (C-11), 170.2 (C-31), 165.0 (C-13), 130.4 (C-12), 72.1 (C-3), 59.8 (C-9), 59.0 (C-18), 51.2 (C-4), 50.6 (C-5), 45.0 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.0 (C-10), 34.0 (C-1), 33.9 (C 17), 32.9 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.1 (C-2), 21.3 (C-30), 21.1 (C-32), 20.6 (C-27), 19.3 (C-23), 18.6 (C-26), 17.4 (C-29), 17.0 (C-6), 14.6 (C-25) ppm;
MS (ESI, MeOH): $m / z=497.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4}$ (496.72): C 77.38, H 9.74; found: C 77.12, H 9.89.

(3 $\alpha, 4 \beta$) 3-Acetoxy-24-hydroximino-urs-12-en-11one (12)

A solution of $11(200 \mathrm{mg}, \quad 0.4 \mathrm{mmol})$ and hydroxylammonium chloride ($157 \mathrm{mg}, 2.0 \mathrm{mmol}$) in dry pyridine (5 mL) was stirred for 3 h at $50^{\circ} \mathrm{C}$; the solvents were removed under diminished pressure, and the residue subjected to chromatography (silica gel, hexane/ethyl acetate, 8:2) to afford $12(160 \mathrm{mg}$, $78 \%)$ as a white solid; m.p. $204^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=40.4^{\circ}(c=$ $3.60, \mathrm{CHCl}_{3}$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39(s, 1 \mathrm{H}, \mathrm{H}-24)$, $5.53(s, 1 \mathrm{H}, \mathrm{H}-12), 5.30(d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), 2.52 (virt. $d t, J=13.3,3.3,3.3 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.42$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.10 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.07 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.87 ($d d d, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}$), 1.72 (virt. $d t, J=12.9,3.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7 \mathrm{a}), 1.58$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.55 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.52 $(d d, J=11.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$, $1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.44 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 1 \mathrm{H}, \mathrm{H}-21 \mathrm{a}$), 1.38 (m, $1 \mathrm{H}, \mathrm{H}-19), 1.37(d d, J=2.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.33$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), $1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}), 1.26$ ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{H}-21 \mathrm{~b}), 1.19$ ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.17 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.16$
($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.09 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.02 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 0.97 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.92 ($m, 1 \mathrm{H}$, $\mathrm{H}-20), 0.80(s, 3 \mathrm{H}, \mathrm{H}-28), 0.78(d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-$ 29) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3(\mathrm{C}-11), 170.3$ (C-31), 164.8 (C-13), 154.5 (C-24), 130.4 (C-12), 73.4 (C-3), 60.2 (C-9), 59.0 (C-18), 50.2 (C-5), 45.0 (C-8), 43.7 (C-14), 42.0 (C-4), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.0 (C-10), 34.1 (C-1), 33.9 (C-17), 32.5 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C15), 23.9 (C-23), 22.7 (C-2), 21.3 (C-30), 21.1 (C-32), 20.6 (C-27), 18.6 (C-26), 17.4 (C-29), 17.0 (C-6), 15.0 (C-25) ppm;
MS (ESI, MeOH): $m / z=512.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{4}$ (511.74): C 75.11, H 9.65, N 2.74; found: C 74.91, H 9.84, N 2.53.
(3 $\alpha, 4 \beta$) 3-Acetoxy-4-methylamino-urs-12-en-11one (13)
To a solution of $\mathbf{1 2}(110 \mathrm{mg}, 0.22 \mathrm{mmol})$ and ammonium acetate ($172 \mathrm{mg}, 2.2 \mathrm{mmol}$) in dry methanol (10 mL) containing sodium cyanoborohydride ($420 \mathrm{mg}, 6.6 \mathrm{mmol}$), TiCl_{3} (solution, 12% in aqu. $\mathrm{HCl}, 1.39 \mathrm{~mL}, 1.67 \mathrm{mmol}$) was added, and stirring at $25^{\circ} \mathrm{C}$ was continued overnight. Usual workup (2 N NaOH) followed by extraction with DCM and chromatography (silica gel, $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{aq} . \mathrm{NH}_{3}, 95: 5: 1$) gave 13 (106 mg, $96 \%)$ as a white amorphous solid; $[\alpha]_{\mathrm{D}}=+50.3^{\circ}(c=$ $4.58, \mathrm{CHCl}_{3}$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.04(d d, J=2.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.85(d, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-24), 2.63$ ($d, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24$), 2.53 (virt. $d t, J=13.3,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.42(s, 1 \mathrm{H}$, $\mathrm{H}-9$), 2.08 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.06 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.90 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 1.85 ($m, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}$), 1.68 (virt. $d t, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 12.5$ $\mathrm{Hz}, \mathrm{H}-7 \mathrm{a}$), 1.60 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.56 ($m, 2 \mathrm{H}, \mathrm{H}-6$), $1.52(d, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.40$ ($m, 2 \mathrm{H}, \mathrm{H}-22$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.37 ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.34 ($m, 1 \mathrm{H}$, $\mathrm{H}-7 \mathrm{~b}), 1.33$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.27 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.20 ($m, 1 \mathrm{H}, \mathrm{H}-5$), 1.18 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.16 ($s, 3 \mathrm{H}, \mathrm{H}-$ 25), 1.14 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 0.99 (virt. $d t, J=15.4,2.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.93(s, 3 \mathrm{H}, \mathrm{H}-30), 0.90(s, 3 \mathrm{H}$, $\mathrm{H}-23), 0.88$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), $0.80(s, 3 \mathrm{H}, \mathrm{H}-28), 0.79$ ($d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.6(\mathrm{C}-11), 170.7$ (C-31), 164.8 (C-13), 130.4 (C-12), 73.6 (C-3), 61.6 (C-9), 59.0 (C-18), 50.7 (C-5), 45.3 (C-24), 45.2 (C-8), 43.6 (C-14), 41.4 (C-4), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 36.8 (C-10), 34.3 (C-1), 33.9 (C-17), 33.0 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 22.5 (C-2), 22.1 (C-23), 21.4 (C-30), 21.1 (C-32), 20.6 (C-27), 18.4 (C-26), 17.5 (C-6), 17.4 (C-29), 16.9 (C-25) ppm;
MS (ESI, MeOH): $m / z=498.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{3}$ (497.75): C 77.22 , H 10.33 N 2.81; found: C 77.03, H 10.54, N 2.56 .

3-O-Acetyl-11-keto- β-boswellic acid methyl ester

 (14)Following the procedure as described for the synthesis of $\mathbf{2 6}$ (vide infra), compound $\mathbf{1 4}$ was obtained in 95% yield as a colorless solid; m.p. 181-184 ${ }^{\circ} \mathrm{C}$ (lit.: 203$204{ }^{\circ} \mathrm{C}^{6},[\alpha]_{\mathrm{D}}=+73.0^{\circ}\left(c=4.2, \mathrm{CHCl}_{3}\right)\left(\right.$ Lit.: $+51.7^{\circ}$ $\left(c=3.8, \mathrm{CHCl}_{3}\right)^{6}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.30(d d, 1 \mathrm{H}, J=2.7,3.0 \mathrm{~Hz}, \mathrm{H}-3), 3.65(s, 3 \mathrm{H}, \mathrm{H}-$ $33)$), 2.50 ($d d d, J=13.4,2.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.38$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.18 (dddd, $J=15.5,2.7,4.4,14.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.07 ($d d d, 1 \mathrm{H}, J=15.0,4.4,14.7 \mathrm{~Hz}, \mathrm{H}-$ 16a), 2.05 ($s, 3 \mathrm{H}, \mathrm{H}-32$)), 1.87 ($d d d, 1 \mathrm{H}, J=13.0,5.2$, $14.7 \mathrm{~Hz}, \mathrm{H}-15 \mathrm{a}), 1.80$ ($d d d d, 1 \mathrm{H}, J=14.2,4.212 .6$, $13.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 1.72$ (dddd, $1 \mathrm{H}, J=14.2,2.0,3.6,4.3$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{~b}), 1.65$ ($d d d, 1 \mathrm{H}, \mathrm{J}=12.2,3.6,13.6 \mathrm{~Hz}$, $\mathrm{H}-7 \mathrm{a}$), 1.58 ($d d d d, 1 \mathrm{H}, J=15.5,2.8,3.0,3.1 \mathrm{~Hz}$, $\mathrm{H}-2 \mathrm{~b}), 1.51(d d, 1 \mathrm{H}, J=11.6,2.2 \mathrm{~Hz}, \mathrm{H}-18), 1.46$ ($d d d, 1 \mathrm{H}, J=14.3,0.4,4.5 \mathrm{~Hz}, \mathrm{H}-22 \mathrm{~b}$), 1.44 ($d d d, 1 \mathrm{H}$, $J=12.2,4.2,4.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 1.42$ (dddd, $1 \mathrm{H}, J=14.5$, $0.4,10.7,13.8 \mathrm{~Hz}, \mathrm{H}-21 \mathrm{a}), 1,41$ (ddd, $1 \mathrm{H}, J=7.9,9.8$, $11.6 \mathrm{~Hz}, \mathrm{H}-19), 1.36(d d, 1 \mathrm{H}, J=2.0,12.6 \mathrm{~Hz}, \mathrm{H}-5)$, 1.33 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.30 ($d d d d, 1 \mathrm{H}, J=14.5,1.0,4.5$, $7.0 \mathrm{~Hz}, \mathrm{H}-21 \mathrm{~b}), 1.28$ (ddddd, 1H, $J=14.3,7.0,10.7$, $2.2,3.9 \mathrm{~Hz}, \mathrm{H}-22 \mathrm{a}$), 1.21 ($d d d, 1 \mathrm{H}, J=13.0,1.8,4.4$ $\mathrm{Hz}, \mathrm{H}-15 \mathrm{~b}), 1.18$ ($d d d, 1 \mathrm{H}, J=13.4,3.1,14.2 \mathrm{~Hz}$, H-1a), 1.15 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.15 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.01 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 ($d d d d, 1 \mathrm{H}, J=15.0,1.8,5.2,3.9$ $\mathrm{Hz}, \mathrm{H}-16 \mathrm{~b}), 0.92$ ($d, 3 \mathrm{H}, J=3.7 \mathrm{~Hz}, \mathrm{H}-30$), 0.92 (dddd, 1H, $J=1.0,3.7,9.8,13.8 \mathrm{~Hz}, \mathrm{H}-20), 0.80$ ($s, 3 \mathrm{H}, \mathrm{H}-28$), $0.77(d, 3 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 176.1$ (C-24), 170.2 (C-31), 164.8 (C-13), 130.5 (C-12), 73.3 (C-3), 60.2 (C-9), 59.0 (C-18), 51.5 (C-33), 50.4 (C-5), 46.6 (C-4), 45.0 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.1 (C-10), 34.6 (C-1), 33.9 (C-17), 32.8 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.8 (C-23), 23.6 (C-2), 21.3 (C-30), 21.1 (C-32), 20.5 (C-27), 18.7 (C-6), 18.3 (C-26), 17.4 (C-29), 13.1 (C-25) ppm; MS (ESI, MeOH): $m / z=527.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{5}(526.75)$: C $75.25, \mathrm{H} 9.57$; found : C 75.03, H 9.69.

3- O-Acetyl-11-keto- β-boswellic acid ethyl ester (15) and $3-O$-acetyl-11-keto- β-boswellic acid- N, N^{\prime}-diisopropylcarbaminimidanhydride (16)
To a solution of $4(200 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry DCM $(15 \mathrm{~mL})$, DIC ($76 \mathrm{mg}, 0.6 \mathrm{mmol}$), DMAP ($50 \mathrm{mg}, 0.4$ $\mathrm{mmol})$ and dry ethanol (1.5 mL) were added. After stirring for 12 h at $25^{\circ} \mathrm{C}$, the solvents were removed under diminished pressure, and the residue subjected to chromatography (silica gel, hexane/ethyl acetate, 95:5) to yield $\mathbf{1 5}$ ($150 \mathrm{mg}, 69 \%$) as a white solid; m.p. $211-214^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+71.0^{\circ}\left(c=5.32, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.31(d d, 1 \mathrm{H}, \mathrm{H}-3, J=2.4,2.7 \mathrm{~Hz}), 4.12(m, 2 \mathrm{H}$, $\mathrm{H}-33$), 2.51 (virt. $d t, J=13.4 \mathrm{~Hz}, 3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}), 2.39$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.19 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.07 (virt. $d t, J=13.7,4.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 2.06$ ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.87 (virt. $d t, J=13.4,4.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}$,

H-15a), 1.84 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.73 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.65 (virt. $d t, J=12.8 \mathrm{~Hz}, 4.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.59 $(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52(d d, J=11.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-18), 1.47(m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}), 1.42(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}$, $\mathrm{H}-21), 1.39$ ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($d d, J=2.1,12.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 1.33$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.30 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), $1.26(t, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-34), 1.20$ (virt. $d t, J=13.4$ $\mathrm{Hz}, 4.0,13.4,1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.18$ ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.16 ($s, 6 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-26$), 1.05 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 (virt. dt, $J=13.4,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.94$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.80 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.78 ($d, J=6.4$ Hz, H, H-29) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3(\mathrm{C}-11), 175.5$ (C-24), 170.2 (C-31), 164.8 (C-13), 130.5 (C-12), 73.3 (C-3), 60.6 (C-33), 60.3 (C-9), 59.0 (C-18), 50.5 (C-5), 46.6 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.3 (C-10), 34.7 (C-1), 34.0 (C-17), 32.9 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9 (C-23), 23.7 (C-2), 21.3 (C-32), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 14.0 (C-34), 13.4 (C-25) ppm;
MS (ESI, MeOH): $m / z=541.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{5}$ (540.77): C 75.51, H 9.69; found: C 75.43, H 9.80.

Data for 16: yield: 18 mg (7\%), amorphous, white solid; $[\alpha]_{\mathrm{D}}=-23.5^{\circ}\left(c=6.32, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.70(b r s, 1 \mathrm{H}, \mathrm{N} H)$, 5.53 ($s, 1 \mathrm{H}, \mathrm{H}-12$), 5.48 (br s, 1H, H-3), 4.07 ($\mathrm{m}, 1 \mathrm{H}$, H-34), 3.74 ($m, 1 \mathrm{H}, \mathrm{H}-37$), 2.50 ($d d d, J=13.3,2.9$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.39(s, 1 \mathrm{H}, \mathrm{H}-9), 2.18$ ($m, 1 \mathrm{H}, \mathrm{H}-$ 2a), 2.11 (virt. dt, $J=13.7,4.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), $2.04(s, 3 H, H-32), 1.87$ (virt. $d t, J=13.7,4.6,13.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.80 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$), 1.70 ($m, 1 \mathrm{H}, \mathrm{H}-$ $7 \mathrm{a}), 1.58$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.52 ($d d, J=11.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-18$), 1.48 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.46 ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.44 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 1.41 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.39 ($m, 1 \mathrm{H}$, $\mathrm{H}-19), 1.34(d d, J=2.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.30(d, J$ $=7.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{H}-35, \mathrm{H}-36, \mathrm{H}-38, \mathrm{H}-39)$), $1.29(m$, $1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}), 1.22$ ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.19 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.18 ($s, 6 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-26$), 1.08 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 (virt. dt, $J=13.7,3.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.94$ (m, $1 \mathrm{H}, \mathrm{H}-20), 0.93$ ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.0(\mathrm{C}-11), 174.0$ (C-24), 170.2 (C-31), 164.6 (C-13), 154.8 (C-33), 130.6 (C-12), 73.6 (C-3), 60.4 (C-9), 59.0 (C-18), 53.5 (C-34), 50.4 (C-5), 48.1 (C-37), 46.5 (C-4), 45.0 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C20), 37.5 (C-10), 34.8 (C-1), 34.0 (C-17), 32.9 (C-7), 30.9 (C-21), 28.9 (C-38 and C-39), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 24.9 (C-35 and C-36), 24.0 (C23), 23.8 (C-2), 21.3 (C-30), 21.1 (C-32), 20.5 (C-27), 19.5 (C-6), 18.3 (C-26), 17.4 (C-29), 13.6 (C-25) ppm;
MS (ESI, MeOH): $m / z=639.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{5}$ (638.78): C 73.31, H 9.78, N 4.38; found: C 73.09, H 9.98, N 4.11.

11-Keto- β-boswellic acid ethyl ester (17)

Zemplén deacetylation of $\mathbf{1 5}$ ($270 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{~mL})$ and cat. NaOEt followed by usual workup and chromatography (silica gel, hexane/ethyl acetate, 95:5), gave $\mathbf{1 7}$ ($224 \mathrm{mg}, 90 \%$) as a white solid; m.p. $230-233^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+116.9^{\circ}(c=4.4$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52(s, 1 \mathrm{H}, \mathrm{H}-12)$, 4.10 ($m, 1 \mathrm{H}, \mathrm{H}-3,2 \mathrm{H}, \mathrm{H}-31$), 2.47 ($d d d, J=13.7,3.3$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.40(s, 1 \mathrm{H}, \mathrm{H}-9), 2.27$ ($m, 1 \mathrm{H}, \mathrm{H}-$ 2a), 2.07 (virt. $d t, J=13.7, J=5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 16a), 1.87 (virt. $d t, J=13.7,4.6 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $15 \mathrm{a}), 1.82$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.72 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.64$ (virt. $d t, J=13.3,4.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.54 (m, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52$ ($d d, J=1.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 1.48 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.47 ($d d, J=12.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.42 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), $1.32(m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.29(s, 3 \mathrm{H}, \mathrm{H}-27), 1.28(\mathrm{~m}, 1 \mathrm{H}$, H-22a), 1.27 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.26 ($t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-$ 32), $1.20(m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-26), 1.04$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 ($d d d, J=13.7,2.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{~b}), 0.92$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-30$), 0.90 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20$), 0.80 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.78 ($d, J=6.6 \mathrm{~Hz} 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.5(\mathrm{C}-11), 176.7$ (C-24), 164.9 (C-13), 130.5 (C-12), 70.7 (C-3), 60.4 (C-9), 60.2 (C-31) 59.0 (C-18), 48.8 (C-5), 47.3 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.4 (C-10), 34.0 (C-1), 33.9 (C-17), 32.9 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 26.3 (C-2), 24.3 (C-23), 21.1 (C-30), 20.5 (C-27), 18.9 (C-6), 18.3 (C-26), 17.4 (C-29), 14.0 (C-32) 13.1 (C-25) ppm;
MS (ESI, MeOH): $m / z=499.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ (498.74): C 77.06, H 10.10; found: C 76.80, H 10.34.

3-O-Acetyl-11-keto- β-boswellic acid propyl ester

 (18)Following the procedure given for the synthesis of 15, from 4 ($150 \mathrm{mg}, 0.3 \mathrm{mmol}$), DIC ($57 \mathrm{mg}, 0.45 \mathrm{mmol}$) und DMAP ($45 \mathrm{mg}, 0.37 \mathrm{mmol}$) in dry DCM and $n-$ propanol (1 mL) followed by chromatography (silica gel, hexane/ethyl acetate, $95: 5$), 18 ($115 \mathrm{mg}, 69 \%$) was obtained as a white amorphous solid; $[\alpha]_{\mathrm{D}}=$ $+75.5^{\circ}\left(c=4.0, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.48(s, 1 \mathrm{H}, \mathrm{H}-12)$, 5.27 (virt. $t, J=2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.00 ($m, 1 \mathrm{H}$, $\mathrm{H}-33$), 3.93 ($m, 1 \mathrm{H}, \mathrm{H}-33$), 2.46 ($d d d, J=13.3,3.0$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.35$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.15 ($m, 1 \mathrm{H}, \mathrm{H}-$ 2a), 2.03 (virt. dt, $J=13.6,5.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.02 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.83 (virt. $d t, J=13.6,5.0,13.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.78$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.70 ($m, 1 \mathrm{H}, \mathrm{H}-$ 6 a), 1.62 ($m, 2 \mathrm{H}, \mathrm{H}-34$), $1.60(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.54$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.48 ($d, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 1.45 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.41 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-21$), 1.36 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.32 ($d d, J=1.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.28 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.25 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.18 ($m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}$ and $1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), $1.12(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{H}-23, \mathrm{H}-26), 1.00$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.95 ($d d d, J=13.6,2.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-16b), $0.91(t, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-35), 0.89(m, 1 \mathrm{H}$,

H-20), 0.88 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.76 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.74 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 175.6$ (C-24), 170.2 (C-31), 164.8 (C-13), 130.5 (C-12), 73.3 (C-3), 66.3 (C33), 60.2 (C-9), 59.0 (C-18), 50.4 (C-5), 46.7 (C-4), 45.0 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.2 (C-10), 34.6 (C-1), 33.9 (C-17), 32.8 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9 (C-23), 23.6 (C-2), 21.7 (C-34), 21.3 (C-30), 21.1 (C-32), 20.5 (C-27), 18.7 (C-6), 18.3 (C-26), 17.4 (C-29), 13.1 (C-25), 10.7 (C-35) ppm;
MS (ESI, MeOH): $m / z=555.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{5}$ (554.80): C 75.77, H 9.81; found: C 75.46, H 9.99.

3-O-Acetyl-11-keto- β-boswellic acid butyl ester (19)

Following the procedure given for the synthesis of 15, from $4(150 \mathrm{mg}, 0.3 \mathrm{mmol})$, DIC ($57 \mathrm{mg}, 0.45 \mathrm{mmol}$), DMAP ($45 \mathrm{mg}, 0.37 \mathrm{mmol}$) and n-butanol (1 mL) followed by chromatography (silica gel, hexane/ethyl acetate, $98: 2$), $\mathbf{1 9}(150 \mathrm{mg}, 87 \%)$ was obtained as a white, amorphous solid; $[\alpha]_{\mathrm{D}}=+68.9^{\circ}(c=3.88$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.31(d d, J=2.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.10(m, 1 \mathrm{H}$, $\mathrm{H}-33$), 4.02 ($m, 1 \mathrm{H}, \mathrm{H}-33$), 2.51 (virt. $d t, J=13.1,3.4$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.39(s, 1 \mathrm{H}, \mathrm{H}-9), 2.20(m, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{a}$), 2.08 (virt. $d t, J=13.7,4.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 16a), 2.06 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.88 ($d d d, J=13.4,4.9,13.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.83$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.73 ($m, 1 \mathrm{H}$, H-6b), 1.66 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.62 ($m, 2 \mathrm{H}, \mathrm{H}-34$), 1.60 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.52 ($d d, J=11.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 1.48 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.43 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($m, 2 \mathrm{H}, \mathrm{H}-35$), $1.34(m, 1 \mathrm{H}$, $\mathrm{H}-5), 1.33$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.30 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.20 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.17 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.16 (s, $3 \mathrm{H}, \mathrm{H}-23$), 1.05 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.98 ($d d d, J=13.7$, 2.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.93$ ($s, 3 \mathrm{H}, \mathrm{H}-30$), $0.92(t, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-36), 0.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-20), 0.81(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-28), 0.79(d, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3(\mathrm{C}-11), 175.6$ (C-24), 170.2 (C-31), 164.8 (C-13), 130.5 (C-12), 73.3 (C-3), 64.5 (C-33), 60.3 (C-9), 59.0 (C-18), 50.5 (C-5), 46.7 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.2 (C-10), 34.7 (C-1), 34.0 (C-17), 32.9 (C-7), 30.9 (C-21), 30.4 (C-34), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9 (C-23), 23.7 (C-2), 21.3 (C-30), 21.1 (C-32), 20.5 (C-27), 19.4 (C35), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.7 (C-36), 13.3 (C-25) ppm;
MS (ESI, MeOH) $m / z=569.4 \mathrm{M}+\mathrm{H}]^{+}$; analysis calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{5}$ (568.83): C 76.01, H 9.92; found: C 75.80, H 10.03.

11-Keto- β-boswellic acid butyl ester (20)

Zemplen deacetylation of $\mathbf{1 9}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in n-butanol (3.0 mL) with catal. amounts of sodium butanolate as described above gave $20(79 \mathrm{mg}, 86 \%)$ as a white solid; m.p. $185-188^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+98.1^{\circ}(c=$
4.24, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.52(s, 1 \mathrm{H}, \mathrm{H}-12)$, $4.07(d d, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.05(m, 1 \mathrm{H}, \mathrm{H}-$ 31), 3.99 ($m, 1 \mathrm{H}, \mathrm{H}-31$), 2.47 (ddd, $J=13.3,2.9,4.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.40$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.26 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.07 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.86 (virt. dt, $J=13.7,5.4,13.7 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.81$ (m, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 1.72$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.64 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), $1.62(m, 2 \mathrm{H}, \mathrm{H}-32), 1.58(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-18), 1.46$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), $1.44(m, 1 \mathrm{H}, \mathrm{H}-5$, and $1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$, and $2 \mathrm{H}, \mathrm{H}-21$), $1.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-33), 1.39$ ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.30 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.29(s, 3 \mathrm{H}, \mathrm{H}-27)$, 1.28 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.26 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.19 ($d d d$, $J=13.7,2.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.15$ ($s, 3 \mathrm{H}, \mathrm{H}-26$), $1.03(s, 3 \mathrm{H}, \mathrm{H}-25), 0.98(d d d, J=13.7,2.1,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.94$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.92 ($t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-34$), $0.79(s, 3 \mathrm{H}, \mathrm{H}-28), 0.77$ ($d, J=6.6 \mathrm{~Hz} 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.5(\mathrm{C}-11), 176.8$ (C-24), 164.9 (C-13), 130.5 (C-12), 70.7 (C-3), 64.1 (C-31), 60.4 (C-9), 59.0 (C-18), 48.8 (C-5), 47.4 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.4 (C-10), 34.8 (C-17), 34.0 (C-1), 32.9 (C-7), 30.9 (C-21), 30.5 (C-32), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 26.3 (C-2), 24.3 (C-23), 21.1 (C-30), 20.5 (C-27), 19.4 (C-33), 18.9 (C-6), 18.3 (C-26), 17.4 (C-29), 13.8 (C-34), 13.6 (C-25) ppm;
MS (ESI, MeOH): $m / z=527.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{4}$ (526.79): C 77.52, H 10.33; found: C 77.37, H 10.50 .

3-O-Acetyl-11-keto- β-boswellic acid 2-(2-

 hydroxyethoxy)-ethyl ester (21)Following the procedure as described above, from 4 ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) and thionyl chloride (1 mL) and sodium diethyleneglycolate [from diethyleneglycole $(1 \mathrm{~mL})+$ sodium $(100 \mathrm{mg})$] followed by chromatography (silica gel, hexane/ethyl acetate, 95:5), 21 ($160 \mathrm{mg}, 60 \%$) was obtained as a white amorphous solid; $[\alpha]_{\mathrm{D}}=+56.1^{\circ}\left(c=6.36, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.32(d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.22(m, 2 \mathrm{H}, \mathrm{H}-$ 36), 3.70 ($m, 4 \mathrm{H}, 2 \mathrm{H}-33, \mathrm{H}-34$), 3.57 ($m, 2 \mathrm{H}, \mathrm{H}-35$), 2.52 (ddd $, J=13.3,3.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.39(s$, $1 \mathrm{H}, \mathrm{H}-9$), 2.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.08 (virt. $d t, J=13.7$, $5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 2.06$ ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.89 (m , $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 1.86$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), $1.66(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.59(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52(d d, J=$ $11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.49$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 2H, H-21), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.37 $(d d, J=1.7,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.34(m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a})$, 1.33 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.18 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.17 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.16 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.06 ($s, 3 \mathrm{H}$, $\mathrm{H}-25), 0.99$ ($d d d, J=13.7,2.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), $0.94(m, 1 \mathrm{H}, \mathrm{H} 20), 0.93(s, 3 \mathrm{H}, \mathrm{H}-30), 0.80(s, 3 \mathrm{H}$, $\mathrm{H}-28), 0.78$ ($d, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.1$ (C-11), 175.5 (C-24), 170.1 (C-31), 164.8 (C-13), 130.5 (C-12), 73.2 (C-3), 72.2 (C-35), 68.8 (C-34), 63.4 (C-36), 61.8 (C-33), 60.2 (C-9), 59.1 (C-18), 50.5 (C-5), 46.8
(C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.3 (C-10), 34.7 (C-1), 34.0 (C-17), 32.9 (C-7), 30.9 (C-21), 28.9 (C-28), 27.6 (C-16), 27.3 (C-15), 23.8 (C-23), 23.6 (C-2), 21.3 (C-30), 21.1 (C-32), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.3 (C-25) ppm;
MS (ESI, MeOH): $\left.m / z=601.4 /[\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{7}$ (600.83): C 71.97, H 9.39; found: C 71.69, H 9.47.

3-O-Acetyl-11-keto-boswellic acid 4-(N-tert-butyloxycarbonylamino)]-butyl ester (22)

Following the procedure as described above, from 4 ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$), thionyl chloride (1 mL) and 4-aminobutan-1-ol ($356 \mathrm{mg}, 4.0 \mathrm{mmol}$) the crude ester was prepared, followed by dissolving the residue in 1,4-dioxane (8 mL) and water (4 mL). An aq. solution of sodium hydroxide ($1 \mathrm{~N}, 4 \mathrm{~mL}$) and di-tert-butyldicarbonate ($960 \mathrm{mg}, 4.4 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$, and stirring at $25^{\circ} \mathrm{C}$ was continued overnight. Usual workup followed by an extraction with ethyl acetate and chromatography (silica gel, hexane/ethyl acetate, 4:1) gave 22 ($160 \mathrm{mg}, 58 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}=+48.2^{\circ}\left(c=4.42, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.54(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.31(d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.10(m, 1 \mathrm{H}, \mathrm{H}-$ 33), 4.03 ($m, 1 \mathrm{H}, \mathrm{H}-33$), 3.14 (virt. $d, J=6.2,6.2 \mathrm{~Hz}$, 2H, H-36), 2.52 (virt. dt, $J=13.3,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1b), 2.40 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9$), 2.19 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.09 (virt. $d t, J=13.7,4.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 2.07(s, 3 \mathrm{H}$, $\mathrm{H}-32$), 1.89 (virt. $d t, J=13.7,4.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}), 1.82$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.77 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.70 ($m, 2 \mathrm{H}, \mathrm{H}-35$), 1.66 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.60(m, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{~b}), 1.55$ ($m, 2 \mathrm{H}, \mathrm{H}-34$), 1.53 ($d d, J=11.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$, 2H, H-21), 1.43 ($s, 9 \mathrm{H}, \mathrm{H}-39, \mathrm{H}-40, \mathrm{H}-41$), 1.40 (m, $1 \mathrm{H}, \mathrm{H}-19), 1.37$ ($d d, J=2.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.33 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.30 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), $1.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.17 ($s, 6 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-26$), 1.04 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.01 (virt. $d t, J=13.7,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{~b}), 0.95$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.94 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 175.5$ (C-24), 170.1 (C-31), 164.8 (C-13), 155.9 (C-37), 130.5 (C-12), 79.5 (C-38), 73.2 (C-3), 64.3 (C-33), 60.2 (C-9), 59.0 (C-18), 50.4 (C-5), 46.7 (C-4), 45.0 (C-8), 43.7 (C-14), 40.9 (C-22), 40.0 (C36), 39.3 (C-19), 39.3 (C-20), 37.2 (C-10), 34.6 (C-1), 33.9 (C-17), 32.8 (C-7), 30.9 (C-21), 28.8 (C-28), 28.4 (C39; C-40 and C-41), 27.5 (C-16), 27.2 (C-15), 26.9 (C-34), 25.8 (C-35), 23.9 (C-23), 23.6 (C-2), 21.4 (C-30), 21.1 (C-32), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.3 (C-25) ppm;
MS (ESI, methanol): $m / z=706.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; analysis calcd for $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{NO}_{7}$ (683.96): C 71.99, H 9.58, N 2.05; found: C 71.74, H 9.82, N 1.86.

3-O-Acetyl-11-keto- β-boswellic difluoromethyl ester (23)

acid
A solution of $4(200 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry glyme (10 mL) was heated to $190^{\circ} \mathrm{C}$, and a solution of sodium
chlorodifluoroacetate ($610 \mathrm{mg}, 4.0 \mathrm{mmol}$) in dry glyme (15 mL) was slowly added within 1 h . Heating and stirring at this temperature was continued for 2 h , the mixture was cooled to room temperature and diluted with water (200 mL). Extraction with DCM (4 x 50 mL) followed by chromatography (silica gel, hexane/ethyl acetate, $95: 5$) gave $\mathbf{2 3}$ ($160 \mathrm{mg}, 71 \%$) as a colorless solid; m.p. $135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+66.7^{\circ}(c=4.52$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.06\left(t, J_{\mathrm{H}, \mathrm{F}}=71.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), $5.54(s, 1 \mathrm{H}, \mathrm{H}-12), 5.29(d d, J=2.5$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.56 (ddd, $J=13.3,2.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}), 2.40(s, 1 \mathrm{H}, \mathrm{H}-9), 2.16$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.08 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 2.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.89 (virt. $d t, J=$ $13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.80 ($m, 2 \mathrm{H}, \mathrm{H}-6$), $1.75(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.65(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.53(d, J=$ $11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.50$ ($m, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-22 \mathrm{~b}$), 1.48 ($m, 2 \mathrm{H}, \mathrm{H}-21$), $1.44(d d, J=2.1,12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 1.39(m, 1 \mathrm{H}, \mathrm{H}-19), 1.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-27), 1.28$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}), 1.25(s, 3 \mathrm{H}, \mathrm{H}-23), 1.20(m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.18$ ($s, 3 \mathrm{H}, \mathrm{H}-26$), $1.10(s, 3 \mathrm{H}$, H-25), 1.01 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.94 ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.93 $(s, 3 \mathrm{H}, \mathrm{H}-30), 0.81(s, 3 \mathrm{H}, \mathrm{H}-28), 0.79(d, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.9(\mathrm{C}-11), 172.4$ (C-24), 169.9 (C-31), 165.0 (C-13), 130.4 (C-12), $112.4\left(t, J_{\mathrm{C}, \mathrm{F}}=258.2 \mathrm{~Hz}, \mathrm{C}-33\right)$, $72.4(\mathrm{C}-3), 60.2$ (C-9), 59.0 (C-18), 50.5 (C-5), 47.0 (C-4), 45.0 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.3 (C-10), 34.4 (C-1), 33.9 (C-17), 32.7 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.3 (C-2), 23.1 (C-23), 21.2 (C-30), 21.1 (C-32), 20.5 (C-27), 18.6 (C-6), 18.2 (C-26), 17.4 (C-29), 13.2 (C-25) ppm; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(188 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-92.7$ $\left(d, J_{\mathrm{F}, \mathrm{F}}=92 \mathrm{~Hz}, \mathrm{~F}\right),-92.3\left(d, J_{\mathrm{F}, \mathrm{F}}=92 \mathrm{~Hz}, \mathrm{~F}\right) \mathrm{ppm}$; MS (ESI, MeOH) $m / z=563.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~F}_{2} \mathrm{O}_{5}$ (562.73): C 70.43, H 8.60; found: C 70.14, H 8.45.

(3 $\alpha, 4 \beta$) 3-Acetyloxy-4-isocyanato-24-norurs-12-en-11-one (24)

To a solution of AKBA ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) in tertbutanol (1.5 mL) and triethylamine ($60 \mathrm{mg}, 0.6 \mathrm{mmol}$) at $70^{\circ} \mathrm{C}$ under argon, diphenylphosphorylazide (260 $\mathrm{mg}, 0.96 \mathrm{mmol}$) was slowly added, and the mixture was stirred for 3 h . The solvents were evaporated under diminished pressure, and the residue was subjected to chromatography (silica gel, hexane/ethyl acetate, $95: 5 \rightarrow 8: 2$) to yield $24(120 \mathrm{mg}, 59 \%)$ as a white solid; m.p. $175^{\circ} \mathrm{C}$ (lit.: $170-176^{\circ} \mathrm{C}^{28}$); $[\alpha]_{\mathrm{D}}=$ $+63.8^{\circ}\left(c=5.0, \mathrm{CHCl}_{3}\right)$, lit.: $+64.7^{\circ}\left(c=5.26, \mathrm{CHCl}_{3}\right)$ 28.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.54(s, 1 \mathrm{H}, \mathrm{H}-12)$, $4.76(d d, J=2.5 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.58$ (virt. $d t$, $J=13.3,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9)$, 2.08 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.07 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.90 (virt. $d t, J=13.5,4.6,13.5 \mathrm{H}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.73 (virt. $d t, J=12.5,4.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 1.65 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.60 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.58$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.50(m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}), 1.45$ ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.32
($s, 6 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-27$), 1.30 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.28 ($m, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}), 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-26), 1.18$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}$, $\mathrm{H}-5,1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.00$ (ddd, $J=13.0,2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{~b}), 0.93$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-30$), 0.92 ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.1(\mathrm{C}-11), 169.8$ (C-31), 165.0 (C-13), 130.4 (C-12), 122.7 (C-24), 75.4 (C-3), 60.4 (C-9), 60.1 (C-4), 58.9 (C-18), 49.2 (C-5), 45.0 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 36.8 (C-10), 33.9 (C-1), 33.4 (C -17), 32.1 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 27.9 (C-23), 22.4 (C-2), 21.3 (C-30), 21.1 (C-32), 20.7 (C-27), 18.8 (C-26), 17.4 (C-29), 17.1 (C-6), 14.8 (C-25) ppm;
MS (ESI, MeOH): $m / z=510.6\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{NO}_{4}$: (509.72): C 75.40, H 9.29, N 2.75; found: C 75.19, H 9.46, N 2.50 .
(3 $\alpha, 4 \beta$) 3-Acetyloxy-4-amino-24-norurs-12-en-11one (25)
To a solution of 24 (obtained from 4 ($400 \mathrm{mg}, 0.8$ mmol) as described above) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, conc. aq. hydrochloric acid (5 mL) was added, and the mixture was stirred for 5 h at $60^{\circ} \mathrm{C}$. Usual work-up followed by extraction with CHCl_{3} ($5 \times 20 \mathrm{~mL}$) followed by chromatography (silica gel, $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{aq} . \mathrm{NH}_{3}, 95: 5: 1$) gave 25 (280 mg , 72%) as an off-white solid; m.p. $168-170^{\circ} \mathrm{C}$ (lit.: 169$171{ }^{\circ} \mathrm{C}^{28},[\alpha]_{\mathrm{D}}=+50.9^{\circ}\left(c=7.92, \mathrm{CHCl}_{3}\right)$ lit.: $+8^{\circ}$ $\left(c=1.0, \mathrm{CHCl}_{3}\right)^{28}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, 4.57 ($d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.54 (virt. $d t, J=$ $13.3,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.41$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.10 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.05 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 1.88 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.72 (virt. $d t, J=12.5,5.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.58(m, 2 \mathrm{H}$, $\mathrm{H}-6), 1.54(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52(d d, J=11.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$, $2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.33 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.30 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.28 ($s, 3 \mathrm{H}, \mathrm{H}-23$), $1.22(m, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.18$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.17 ($s, 3 \mathrm{H}, \mathrm{H}-$ 26), 1.14 ($d d, J=2.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 0.99 (virt. $d t$, $J=14.1,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.93(s, 3 \mathrm{H}, \mathrm{H}-30)$, 0.92 ($m, 1 \mathrm{H}, \mathrm{H}-20$), $0.80(s, 3 \mathrm{H}, \mathrm{H}-28), 0.79(d, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.6(\mathrm{C}-11), 170.3$ (C-31), 164.9 (C-13), 130.4 (C-12), 78.3 (C-3), 61.0 (C-9), 59.0 (C-18), 53.7 (C-4), 49.1 (C-5), 45.2 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 36.7 (C-10), 34.0 (C-1), 33.9 (C-17), 32.4 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 22.0 (C-2), 21.4 (C-30), 21.1 (C-32), 20.7 (C-27), 18.6 (C26), 17.4 (C-29), 16.8 (C-6), 16.0 (C-23), 15.2 (C-25) ppm;
MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=470.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{NO}_{2}$: (469.74): C 79.26, H 10.94, N 2.98; found: C 79.01, H 11.14, N 2.69.

11-Keto- β-boswellic acid methyl ester (26)
A suspension of KBA ($4.73 \mathrm{~g}, 10.0 \mathrm{mmol}$) and
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(9.8 \mathrm{~g}, 30 \mathrm{mmol})$ in THF (50 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then $\mathrm{MeI}(6.23 \mathrm{~mL}, 100 \mathrm{mmol})$ was added, and stirring continued for 12 h . The mixture was diluted with ether (500 mL), washed with water and brine ($2 \times 50 \mathrm{~mL}$ each), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvents were evaporated to yield $26(4.60 \mathrm{~g}, 95 \%)$ as an off-white solid (sufficiently pure for the next reactions); an analytical sample showed m.p. 223-225 ${ }^{\circ} \mathrm{C}$ (lit.: 220-225 ${ }^{\circ} \mathrm{C}{ }^{29},[\alpha]_{\mathrm{D}}=+111.2^{\circ}(c=4.34$, $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ lit.: $+111.2\left(c=4.34, \mathrm{CHCl}_{3}\right)^{29}$.

3-O-Methyl-11-keto- β-boswellic acid methyl ester

 (27)A suspension of $26(300 \mathrm{mg}, 0.62 \mathrm{mmol})$ and sodium hydride (60%; dispersion in mineral oil; $248 \mathrm{mg}, 6.2$ mmol) in dry THF (20 mL) was heated under reflux for 15 min . The mixture was cooled to $25^{\circ} \mathrm{C}$, and methyl iodide ($390 \mu \mathrm{l}, 6.2 \mathrm{mmol}$) was added. After stirring overnight, usual workup and chromatography (silica gel, chloroform) 27 ($280 \mathrm{mg}, 91 \%$) was obtained as a colorless solid; m.p. 243-244 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=$ $+104.2^{\circ}\left(c=4.60, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.50(s, 1 \mathrm{H}, \mathrm{H}-12)$, 3.63 ($s, 3 \mathrm{H}, \mathrm{H}-31$), 3.47 (virt. $t, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 3.29 ($s, 3 \mathrm{H}, \mathrm{H}-32$), 2.39 (virt. $d t, J=12.9,3.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.38(s, 1 \mathrm{H}, \mathrm{H}-9), 2.06$ ($d d d, J=$ $13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.96$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 1.85 (ddd, $J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.76$ (m, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.72 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.64$ (ddd, $J=12.9,3.7 \mathrm{~Hz}, 12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.50(d d, J=$ $11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.46$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.42 ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.40 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 1.39 ($m, 1 \mathrm{H}$, $\mathrm{H}-19), 1.38(m, J=2.1,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.30$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}), 1.28(s, 3 \mathrm{H}, \mathrm{H}-27), 1.22(s, 3 \mathrm{H}$, $\mathrm{H}-23), 1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.18$ ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.14$ $(s, 3 \mathrm{H}, \mathrm{H}-26), 1.00(s, 3 \mathrm{H}, \mathrm{H}-25), 0.98(m, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{~b}), 0.93$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.91 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.79 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.76 ($d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.6(\mathrm{C}-11), 177.5$ (C-24), 164.8 (C-13), 130.5 (C-12), 80.1 (C-3), 60.3 (C-9), 59.0 (C-18), 57.0 (C-32), 51.2 (C-31), 49.5 (C-5), 47.8 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19 and $\mathrm{C}-20$), 37.2 (C-10), 34.2 (C-17), 34.0 (C-1), 32.8 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 24.0 (C-23), 21.1 (C-30), 20.7 (C-2), 20.6 (C-27), 18.9 (C-6), 18.3 (C-26), 17.4 (C-29), 13.2 (C-25) ppm;
MS (ESI, MeOH): $m / z=499.5 \mathrm{M}+\mathrm{H}]^{+}$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$: (498.74): C 77.06, H 10.10; found: C 76.83, H 10.24 .

3-O-tert-Butyl-11-keto- β-boswellic acid methyl ester (28)

To a solution of $\mathbf{2 6}$ ($388 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dry DCM $(20 \mathrm{~mL})$, magnesium perchlorate ($605 \mathrm{mg}, 2.8 \mathrm{mmol}$) and di-tert-butyl-dicarbonate ($2.5 \mathrm{~g}, 11.7 \mathrm{mmol}$) were added within 2 days. After an additional stirring for one day at $25^{\circ} \mathrm{C}$, aq. hydrochloric acid ($1 \%, 20 \mathrm{~mL}$) was added, the organic layer was separated, the aq. phase was extracted with DCM ($3 \times 30 \mathrm{~mL}$), and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$.

The solvent was evaporated under diminished pressure, and the residue was subjected to chromatography (silica gel, chloroform) to yield 28 $(370 \mathrm{mg}, 86 \%)$ as an oil; $[\alpha]_{\mathrm{D}}=+102.0^{\circ}(c=4.60$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.50(s, 1 \mathrm{H}, \mathrm{H}-12)$, 3.83 ($d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.61 ($s, 3 \mathrm{H}$, $\mathrm{H}-31$), 2.38 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.33 (virt. $d t, J=12.9,3.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), 2.06 (virt. dt, $J=13.7,5.0,13.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.98$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 1.85 (virt. $d t, J=$ $13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.76$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), $1.68(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.64(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a})$, 1.49 ($d d, J=11.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 1.46 ($m, 1 \mathrm{H}, \mathrm{H}-$ 22b), 1.44 ($m, 2 \mathrm{H}, \mathrm{H}-21$), 1.42 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.41 ($d d, J=2.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.39$ ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), $1.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-27), 1.28(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}), 1.18(m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.15(s, 15 \mathrm{H}, \mathrm{H}-23$, $\mathrm{H}-26, \mathrm{H}-33, \mathrm{H}-34, \mathrm{H}-35$), 0.98 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.97 (m, $1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.92$ ($m, 1 \mathrm{H}, \mathrm{H}-20$), $0.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-30)$, $0.79(s, 3 \mathrm{H}, \mathrm{H}-28), 0.78(d, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29)$ ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.7(\mathrm{C}-11), 178.1$ (C-24), 164.5 (C-13), 130.6 (C-12), 69.9 (C-3), 60.5 (C-9), 59.0 (C-18), 51.0 (C-31), 48.9 (C-5), 48.1 (C-4), 45.0 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C19 and C-20), 37.2 (C-10), 34.4 (C-1), 33.9 (C-17), 33.0 (C-7), 30.9 (C-21), 29.0 (C-33, C-24 and C-35), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 25.6 (C-2), 24.8 (C-23), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.4 (C-26), 17.4 (C-29), 13.4 (C-25) ppm;
MS (ESI, MeOH): $m / z=541.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{4}$: (540.82): C 77.73, H 10.44; found: C 77.51, H 10.67.

3-O-Octanoyl-11-keto- β-boswellic acid methyl ester (29)

To a solution of 26 ($194 \mathrm{mg}, 0.4 \mathrm{mmol}$) and DMAP ($98 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dry pyridine (10 mL) and dry DCM (10 mL), at $0{ }^{\circ} \mathrm{C}$ capryloyl chloride (650 mg , $452 \mu \mathrm{l}, 4.0 \mathrm{mmol}$) was slowly added. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$, and stirring was continued overnight. After usual workup and chromatography (silica gel, hexane/ethyl acetate, 8:2) 29 (240 mg , 98%) was obtained as an off-white, amorphous solid; $[\alpha]_{\mathrm{D}}=+48.5^{\circ}\left(c=5.26 . \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12), 5.30(d d, J=2.5,2.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.66 ($s, 1 \mathrm{H}, \mathrm{H}-39$), 2.51 (virt. $d t, 1 \mathrm{H}, J$ $=13.3,3.3,3.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 2.38(s, 1 \mathrm{H}, \mathrm{H}-9), 2.30$ $(d d d, J=7.5,9.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-32), 2.18(m, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{a}$), 2.08 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{a}$), 1.88 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 15a), 1.82 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.75 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.62$ (m , $2 \mathrm{H}, \mathrm{H}-33)), 1.60(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.52(d d, J=11.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 2 \mathrm{H}$, $\mathrm{H}-7), 2 \mathrm{H}, \mathrm{H}-21), 1.39(m, 1 \mathrm{H}, \mathrm{H}-19), 1.37(d d, J=2.5$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.32$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), $1.30(m, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}), 1.28$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-34, \mathrm{H}-35$)), 1.26 ($m, 2 \mathrm{H}$, $\mathrm{H}-37$), 1.24 ($m, 2 \mathrm{H}, \mathrm{H}-36$), 1.16 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.15 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.18 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.02$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.00 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 0.93$ ($s, 3 \mathrm{H}$, $\mathrm{H}-30), 0.92(m, 1 \mathrm{H}, \mathrm{H}-20), 0.85(t, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$,
$\mathrm{H}-38), 0.80(s, 3 \mathrm{H}, \mathrm{H}-28), 0.78(d d, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 176.1$ (C-24), 172.8 (C-31), 164.8 (C-13), 130.5 (C-12), 73.0 (C-3), 60.4 (C-9), 59.0 (C-18), 51.6 (C-39), 50.5 (C-5), 46.7 (C-4), 45.1 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.1 (C-10), 34.8 (C32), 34.7 (C-1), 34.0 (C-17), 32.9 (C-7), 31.6 (C36), 30.9 (C-21), 29.1 (C-34), 29.0 (C-35), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 25.1 (C33), 23.9 (C-23), 23.7 (C-2), 22.6 (C37), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 14.0 (C-38), 13.1 (C-25) ppm;
MS (ESI, MeOH): $m / z=611.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{5}$: (610.91): C 76.68, H 10.23; found: C 76.50, H 10.40.

3-O-Pivaloyl-11-keto- β-boswellic acid methyl ester

 (30)Following the procedure given for 29, from 26 (194 $\mathrm{mg}, 0.4 \mathrm{mmol}$), DMAP ($98 \mathrm{mg}, 0.8 \mathrm{mmol}$), dry pyridine, dry DCM (10 mL) and pivaloyl chloride ($480 \mathrm{mg}, 0.4 \mathrm{mmol}$) followed by chromatography (silica gel, hexane/ethyl acetate, 9:1), 30 (210 mg , 93%) was obtained as a white, amorphous solid; $[\alpha]_{D}$ $=+61.4^{\circ}\left(c=5.04, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.53(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.24(d d, J=2.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.67(s, 3 \mathrm{H}$, $\mathrm{H}-33$), 2.52 (virt. $d t, J=13.3,3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), 2.38 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.18 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.08 (virt. dt, J $=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.87 (virt. $d t, J=$ $13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 1.80 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.64 (virt. $d t, J=12.9,3.7,12.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 1.58$ ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.52 ($d d, J=11.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 1 \mathrm{H}$, $\mathrm{H}-7 \mathrm{~b}), 1.42$ ($m, 1 \mathrm{H}, \mathrm{H}-21 \mathrm{a}$), 1.40 ($d d, J=2.1,12.0$, $1 \mathrm{H}, \mathrm{H}-5, \mathrm{~Hz}), 1.36(m, 1 \mathrm{H}, \mathrm{H}-19), 1.32(m, 1 \mathrm{H}$, H-22a), 1.30 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.28 ($m, 1 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}$), 1.20 ($s, 9 \mathrm{H}, \mathrm{H}-34, \mathrm{H}-35, \mathrm{H}-36)$), 1.19 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{~b}), 1.17$ ($s, 6 \mathrm{H}, 2 \mathrm{H}-23, \mathrm{H}-26$), 1.03 ($s, 3 \mathrm{H}$, $\mathrm{H}-25$), 1.00 (virt. $d t, J=13.3,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.91 ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.81 ($s, 3 \mathrm{H}$, $\mathrm{H}-28), 0.80(d, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3(\mathrm{C}-11), 176.0$ (C-24), 177.1 (C-31), 164.9 (C-13), 130.5 (C-12), 73.0 (C-3), 60.5 (C-9), 59.0 (C-18), 51.5 (C-33), 50.7 (C-5), 46.8 (C-4), 45.0 (C-8), 43.6 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.1 (C-10), 34.8 (C-1), 33.9 (C-17), 33.1 (C-7), 30.8 (C-21), 28.8 (C-28), 27.5 (C-16), 27.3 (C-34, C-35 and C-36), 27.2 (C-15), 24.0 (C-23), 23.4 (C-2), 21.1 (C-30), 20.2 (C-27), 18.8 (C-6), 18.3 (C-26), 17.5 (C-29), 13.1 (C-25) ppm;
MS (ESI, methanol): $m / z=569.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{5}$ (568.83): C 76.01, H 9.92; found: C 75.83, H 10.14 .

3-O-Oxalyl- β-boswellic acid (31)

To a solution of $\mathbf{1}(150 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry THF (5 mL), oxalyl chloride ($0.3 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was slowly added, and stirring at $25^{\circ} \mathrm{C}$ was continued for 1 h .

Usual workup followed by extraction (diethyl ether) and chromatography (silica gel, hexane/ethyl acetate, $9: 1 \rightarrow 7: 3 \rightarrow 3: 2)$ gave $31(148 \mathrm{mg}, 85 \%)$ as a white solid; m.p. 211-214 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+54.1^{\circ}(c=0.5$, acetone);
${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta=5.41(t, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22$ ($t, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 2.25 (m, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 2.12$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.93 ($m, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$, $\mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}), 1.79$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.69 ($m, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-9$), 1.58 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-5, \mathrm{H}-7 \mathrm{a}$), 1.39 ($m, 7 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{a}$, $\mathrm{H}-22 \mathrm{~b}$), 1.27 ($b s, 4 \mathrm{H}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-23$), 1.14 ($s, 3 \mathrm{H}$, $\mathrm{H}-27$), 1.12 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.06 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 0.99 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.95 ($b s, 4 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-30$), 0.81 ($s, 3 \mathrm{H}$, $\mathrm{H}-28), 0.80(t, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}, 125 \mathrm{MHz}$): $\delta=178.3(\mathrm{C}-24)$, 160.1 (C-32, COOH of oxalyl), 160.2 (C-31), 141.2 (C-13), 126.6 (C-12), 78.3 (C-3), 61.1 (C-18), 52.0 (C-5), 48.4 (C-9), 48.1 (C-4), 44.1 (C-8), 43.3 (C-22), 41.6 (C-14), 41.7 (C-19), 41.4 (C-20), 39.2 (C-10), 36.4 (C-1), 35.3 (C-17), 34.6 (C-7), 32.7 (C-21), 30.2 (C-28), 29.9 (C-16), 28.1 (C-15), 25.0 (C-2 and C-11), 25.1 (C-23), 24.6 (C-27), 22.4 (C-30), 21.4 (C-6), 18.7 (C-29), 18.3 (C-26), 14.9 (C-25);

MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=529.4\left[(\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6}$ for: (528.72): C 72.45, H 9.37; found: C 72.69, H 9.15.

3-O-Oxalyl-11-keto- β-boswellic acid (32)

Following the procedure given for 31, from 3 (250 $\mathrm{mg}, 0.53 \mathrm{mmol}) 32(234 \mathrm{mg}, 84 \%)$ was obtained as an off-white solid; m.p. $186-189{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+65.2^{\circ}$ ($c=1.04$, acetone);
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.56(s, 1 \mathrm{H}, \mathrm{H}-12)$, $5.44(b s, 1 \mathrm{H}, \mathrm{H}-3), 2.57(m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.44(\mathrm{~s}, 1 \mathrm{H}$, H-9), 2.30 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.09 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.91 ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$), 1.72 ($m, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$, $\mathrm{H}-7 \mathrm{a}), 1.47$ ($m, 6 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-21 \mathrm{~b}$, H-22a), 1.35 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.31 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.301.22 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.20 ($\mathrm{bs}, 4 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}, \mathrm{H}-26$), 1.15 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.05-0.96 ($m, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{~b}$), 0.95 ($b s, 4 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-30$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.80 ($d, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .125 \mathrm{MHz}\right): \delta=200.3(\mathrm{C}-11), 180.5$ (C-24), 165.7 (C-13), 158.7 (C-32 of oxalyl), 157.6 (C-31), 130.4 (C-12), 77.6 (C-3), 60.0 (C-9), 59.0 (C-18), 50.3 (C-5), 46.5 (C-4), 45.0 (C-8), 43.6 (C-14), 40.7 (C-22), 39.3 (C-19), 39.2 (C-20), 37.1 (C-10), 34.1 (C-1), 34.2 (C-17), 32.5 (C-7), 30.8 (C-21), 28.9 (C-28), 27.4 (C-16), 27.4 (C-15), 23.7 (C-23), 23.2 (C-2), 21.0 (C-30), 20.3 (C-27), 18.5 (C-6), 18.3 (C-26), 17.1 (C-29), 13.1 (C-25) ppm;
MS (ESI; MeOH$): m / z=527.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{7}$ for: (526.70): C 72.97, H 8.80; found: C 72.77, H 8.98.

Bis[3- O - β-boswellic acid]malonate (33)

A solution of $\mathbf{1}(500 \mathrm{mg}, 1.09 \mathrm{mmol})$ in dry THF (15 mL) was slowly added to a solution of malonyl chloride ($1.0 \mathrm{~g}, 7.0 \mathrm{mmol}$) in dry THF (1.0 mL), and stirring at $25{ }^{\circ} \mathrm{C}$ was continued for 10 min . The
mixture was poured into cold water ($5^{\circ} \mathrm{C}, 100 \mathrm{~mL}$). Extraction with diethyl ether ($5 \times 50 \mathrm{~mL}$) followed by usual work-up and chromatography (silica gel, hexane/diethyl ether $1: 1+1 \% \mathrm{HOAc}$) gave 33 (251 $\mathrm{mg}, 47 \%)$ as a colorless solid; m.p. 237-240 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $=+61.7^{\circ}\left(c=0.55, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .500 \mathrm{MHz}\right): \delta=5.40(b s, 2 \mathrm{H}, \mathrm{H}-3)$, 5.16 (bs, 2H, H-12), 3.45 ($s, 2 \mathrm{H}, \mathrm{H}-32$ of malonyl), 2.17 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.92 ($\mathrm{m}, 4 \mathrm{H}$, H-11a, H-11b), 1.81 ($m, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$), 1.68 (m , 4H, H-2a, H-6a), 1.54 ($m, 6 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-9$), 1.40 ($m, 8 \mathrm{H}, \mathrm{H}-5 . \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{a}$), 1.32 ($m, 4 \mathrm{H}$, $\mathrm{H}-18 . \mathrm{H}-19), 1.29$ ($s, 6 \mathrm{H}, \mathrm{H}-23$), 1.21 ($m, 6 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$, H-21a, H-22b), 1.11 ($s, 6 \mathrm{H}, \mathrm{H}-27$), 1.06 ($s, 6 \mathrm{H}, \mathrm{H}-26$), 1.05-0.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-15 \mathrm{a}$), 0.91 ($\mathrm{m}, 16 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$, H-20, H-25, H-30), 0.79 (bs, 12H, H-28. H-29) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .125 \mathrm{MHz}\right): \delta=182.1(\mathrm{C}-24), 165.5$ (C-31 of malonyl), 139.4 (C-13), 124.5 (C-12), 74.5 (C-3), 59.1 (C-18), 50.5 (C-5), 46.8 (C-9), 46.9 (C-4), $42.1(\mathrm{C}-14), 42.1\left(\mathrm{C}-32, \mathrm{CH}_{2}\right.$ of malonyl), 41.6 (C-22), 40.1 (C-8), 39.6 (C-19), 39.3 (C-20), 37.4 (C-10), 34.5 (C-1), 33.8 (C-17), 33.0 (C-7), 31.0 (C-21), 28.9 (C-28), 28.0 (C-16), 26.3 (C-15), 23.6 (C-23), 23.5 (C-2), 23.3 (C-11), 23.3 (C-27), 21.3 (C-30), 19.6 (C-6), 17.6 (C-29), 16.7 (C-26), 13.1 (C-25) ppm;
MS (ESI; MeOH$): m / z=981.9\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{8}$ (981.43): C 77.10, H 9.86; found: C 76.83, H 9.97.

Bis[3-O-11-keto- β-boswellic acid]malonate (34)

Following the procedure given for 33, from 3 (500 $\mathrm{mg}, 1.06 \mathrm{mmol}) 34(303 \mathrm{mg}, 57 \%)$ was obtained as a colorless solid; m.p. $234-238{ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}=$ $+90.3^{\circ}\left(c=0.65, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.55(s, 2 \mathrm{H}, \mathrm{H}-12)$, 5.37 (bs, 2H, H-3), 3.45 ($s, 2 \mathrm{H}, \mathrm{H}-32$ of malonyl), 2.56 ($m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), 2.42 ($s, 2 \mathrm{H}, \mathrm{H}-9$), 2.26 ($m, 2 \mathrm{H}, \mathrm{H}-$ 2b), 2.09 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.87 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$), 1.68 ($m, 6 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-7 \mathrm{a}$), 1.46 ($m, 12 \mathrm{H}, \mathrm{H}-5$, H-7b, H-18, H-19, H-21b, H-22a), 1.33 ($s, 6 \mathrm{H}, \mathrm{H}-27$), 1.30 ($m, 4 \mathrm{H}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 1.24 ($s, 6 \mathrm{H}, \mathrm{H}-23$), 1.20 ($m, 4 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-15 \mathrm{a}$), 1.17 ($s, 6 \mathrm{H}, \mathrm{H}-26$), 1.12 ($s, 6 \mathrm{H}$, H-25), 1.03 ($m, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.95 ($b s, 8 \mathrm{H}, \mathrm{H}-20$. $\mathrm{H}-30), 0.85(s, 6 \mathrm{H}, \mathrm{H}-28), 0.81(d, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}$, H-29) ppm;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=199.5(\mathrm{C}-11), 181.4$ (C-24), 165.5 (C-31 of malonyl), 165.1 (C-13), 130.3 (C-12), 74.5 (C-3), 60.1 (C-9), 59.0 (C-18), 50.6 (C-5), 46.7 (C-4), 45.2 (C-8), 43.7 (C-14), 42.0 (C-32 of malonyl)), 40.7 (C-22), 39.0 (C-19, C-20), 37.5 (C-10), 34.3 (C-1), 34.1 (C-17), 32.6 (C-7), 30.8 (C-21), 28.7 (C-28), 27.3 (C-16), 27.0 (C-15), 24.1 (C-23), 23.5 (C-2), 21.0 (C-30), 20.3 (C-27), 18.5 (C-6), 18.6 (C-26), 17.5 (C-29), 13.1 (C-25) ppm;
MS (ESI; MeOH): $m / z=1009.8\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{63} \mathrm{H}_{92} \mathrm{O}_{10}$ (1009.4): C 74.96, H 9.19; found: C 74.73, H 9.32.

3-O-Succinyl- β-boswellic acid (35)

To a solution of $\mathbf{1}(200 \mathrm{mg}, 0.44 \mathrm{mmol})$ in dry DCM
(20 mL) succinic anhydride ($400 \mathrm{mg}, 4.0 \mathrm{mmol}$), dry triethylamine (1.0 mL) and DMAP ($60 \mathrm{mg}, 0.49$ mmol) were added, and the mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for one day. Usual aq. work-up followed by chromatography (silica gel, hexane/ ethyl acetate, 9:1 $\rightarrow 7: 3 \rightarrow 3: 2)$ furnished $35(181 \mathrm{mg}, 81 \%)$ as a colorless solid; m.p. $175-178{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+59.3^{\circ}(c=$ $1.75, \mathrm{CHCl}_{3}$);
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34(t, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 5.17(t, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 2.79-2.60(\mathrm{~m}$, 4H, H-32, H-33), 2.17-2.11 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.04-1.97 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.95-1.91$ ($m, 2 \mathrm{H}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$), 1.89-1.75 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-15$), 1.70-1.67 ($\mathrm{m}, 1 \mathrm{H}$, H-6), 1.65-1.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-9$), 1.55-1.48 (m, 2H, H-1b, H-7a), 1.46-1.35 ($m, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-21 \mathrm{a}$, $\mathrm{H}-22 \mathrm{a}), 1.35-1.31$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-19$), 1.30-1.22 ($m, 2 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{~b}$), 1.22 ($b s, 4 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-23$), 1.11 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.06 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.05-0.96 (m, $1 \mathrm{H}, \mathrm{H}-15), 0.94-0.85$ ($m, 8 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20, \mathrm{H}-25$, $\mathrm{H}-30), 0.80(s, 3 \mathrm{H}, \mathrm{H}-28), 0.79$ ($b s, 3 \mathrm{H}, \mathrm{H}-29$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.4(\mathrm{C}-24), 177.7$ (C-34), 171.0 (C-31), 139.4 (C-13), 124.3 (C-12), 73.9 (C-3), 59.0 (C-18), 50.5 (C-5), 46.8 (C-9), 46.7 (C-4), 42.1 (C-14), 41.5 (C-22), 40.0 (C-8), 39.6 (C-19), 39.5 (C-20), 37.2 (C-10), 34.5 (C-1), 33.6 (C-17), 33.0 (C-7), 31.5 (C-21), 29.1 (C-32 or C-33), 29.1 (C-32or C-33), 28.9 (C-28), 28.0 (C-16), 26.5 (C-15), 23.6 (C-23), 23.5 (C-2), 23.3 (C-11), 23.0 (C-27), 21.1 (C-30), 19.4 (C-6), 17.5 (C-29), 16.8 (C-26), 13.3 (C-25) ppm;
MS (ESI, MeOH): $m / z=509.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{6}$ (508.73): C 70.83, H 10.30; found: C 70.61, H 10.45.

3-O-Succinyl-11-keto- β-boswellic acid (36)

Following the procedure for the synthesis of $\mathbf{3 5}$, from 3 ($188 \mathrm{mg}, 0.4 \mathrm{mmol}$), compound 36 ($162 \mathrm{mg}, 71 \%$) was obtained as a colorless solid; m.p. $180-184{ }^{\circ} \mathrm{C}$ (lit.: $\left.172-176^{\circ} \mathrm{C}^{21}\right) ;[\alpha]_{\mathrm{D}}=50.6^{\circ}\left(c=5.20, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.56(s, 1 \mathrm{H}, \mathrm{H}-12)$, 5.33 (virt. $t, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.67 ($m, 4 \mathrm{H}$, $\mathrm{H}-32, \mathrm{H}-33$), 2.53 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), 2.42 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.08 (virt. $d t, J=13.7,5.0,13.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.88 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.70$ ($m, 2 \mathrm{H}, \mathrm{H}-6$), 1.64 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), $1.56(m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.53(d d, J=11.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), $1.45(m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}$, $\mathrm{H}-21), 1.39$ ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($m, 1 \mathrm{H}, \mathrm{H}-5$), 1.33 (s, $3 \mathrm{H}, \mathrm{H}-27), 1.25$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.22 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), $1.20(s, 3 H, H-26), 1.18(m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.17(s, 3 \mathrm{H}$, $\mathrm{H}-23$), 1.13 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.94 ($m, 1 \mathrm{H}, \mathrm{H}-20$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.80 ($d, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.7$ (C-11), 182.0 (C-24), 178.1 (C34), 170.7 (C-31), 165.6 (C-13), 130.3 (C-12), 73.6 (C-3), 60.2 (C-9), 59.0 (C-18), 50.4 (C-5), 46.5 (C4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.3 (C-10), 34.5 (C-1), 33.9 (C-17), 32.8 (C-7), 30.9 (C-21), $29.4+$ 29.0 (C32 + C33), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.8 (C-23), 23.5 (C-2), 21.1 (C-30), 20.4
(C-27), 18.7 (C-6), 18.3 (C-26), 17.4 (C-29), 13.3 (C-25) ppm;
MS (ESI, MeOH): $m / z=571.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{7}$ (570.76): C 71.55, H 8.83; found: C 71.31, H 8.98.

3- O-Glutaroyl- β-boswellic acid (37)

To a solution of $\mathbf{1}(500 \mathrm{mg}, 1.09 \mathrm{mmol})$ in dry pyridine (15 mL), glutaric anhydride $(1.83 \mathrm{~g}, 16.0$ mmol) and DMAP ($60 \mathrm{mg}, 0.49 \mathrm{mmol}$) were added, and the mixture was heated under reflux for 12 h . Usual aq. work-up followed by chromatography (silica gel, hexane/diethylether $2: 1+1 \% \mathrm{HOAc}$) gave $37(519 \mathrm{mg}, 83 \%)$ as a colorless solid; m.p. 135-138 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+59.1^{\circ}\left(c=0.51, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta=5.33(t, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22(t, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 2.45(t$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-34$ of glutaroyl), $2.41(t, J=7.4 \mathrm{~Hz}$, 2 H , of glutaroyl), 2.20-2.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.11-2.05 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.01-1.85 ($m, 6 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-11 \mathrm{a}$, $\mathrm{H}-11 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}$, of glutaroyl), 1.77-1.75 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.70-1.65 ($m, 1 \mathrm{H}, \mathrm{H}-9$), 1.64-1.56 ($m, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$, $\mathrm{H}-7 \mathrm{a}), 1.55-1.48(m, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-5), 1.46-1.26$ ($m, 8 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-21 \mathrm{~b}$, $\mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}), 1.24$ ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.16 ($s, 3 \mathrm{H}, \mathrm{H}-27$), $1.09(s, 3 H, H-26), 1.06-1.00(m, 1 H, H-15 \mathrm{a}), 0.99$ ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.96-0.88 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20, \mathrm{H}-30$), 0.85 ($s, 3 \mathrm{H}, \mathrm{H}-28$), $0.83(d, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 125 \mathrm{MHz}$): $\delta=179.3$ (C-24), 175.1 (C-35, COOH of glutaroyl), 173.4 (C-31, CO of glutaroyl), 141.3 (C-13), 126.5 (C-12), 75.1 (C-3), 61.1 (C-18), 52.5 (C-5), 48.6 (C-9), 48.1 (C-4), 44.1 (C-8), 43.5 (C-22), 42.1 (C-14), 41.7 (C-19), 41.3 (C-20), 39.0 (C-10), 36.6 (C-1), 35.5 (C-17), 35.2 (C-34 of glutaroyl), 34.7 (C-7), 34.3 (C-32 of glutaroyl), 32.7 (C-21), 30.2 (C-28), 29.9 (C-16), 28.5 (C-15), 25.0 (C-23), 25.2 (C-2), 25.2 (C-11), 24.6 (C-27), 22.5 (C-30), 22.3 (C-33 of glutaroyl), 21.8 (C-6), 18.7 (C-29), 18.6 (C-26), 14.7 (C-25) ppm;
MS (ESI, MeOH): $m / z=571.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{6}$ (570.80): C 73.65, H 9.54; found: C 73.46, H 9.70.

3-O-Glutaroyl-11-keto- β-boswellic acid (38)

Following the procedure given for the synthesis of 37, from 3 ($700 \mathrm{mg}, 1.5 \mathrm{mmol}$), compound 38 (658 mg , 75%) was obtained as a colorless solid; m.p. 136-139 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=65.1^{\circ}(c=0.5$, acetone $)$;
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-\mathrm{d}_{6}$): $\delta=5.51(s, 1 \mathrm{H}, \mathrm{H}-$ 12), $5.27(t, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.52-2.49(m, 2 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, \mathrm{H}-9), 2.45(t, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-34), 2.41(t, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-32$), 2.287-2.15 ($m, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-16 \mathrm{a}$), 1.98-1.86 ($m, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-15 \mathrm{a}, \mathrm{H}-33$), 1.80-1.75 ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-7 \mathrm{a}$), 1.60-1.42 ($m, 7 \mathrm{H}, \mathrm{H}-2 \mathrm{~b} \alpha, \mathrm{H}-5$, H-7b, H-18, H-19, H-21a, H-22a), 1.40 (s, 3H, H-27), 1.39-1.34 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{~b}$), 1.34-1.25 ($\mathrm{m}, 2 \mathrm{H}$, $\mathrm{H}-1 \mathrm{~b}, \mathrm{H}-15 \mathrm{~b}), 1.24$ ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.20 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.19 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.08-1.00 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.95 (bs, 4H, H-20, H-30), 0.85 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.84 ($d, J=$ 6.4 Hz, 3H, H-29) ppm;
${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}): $\delta=199.7$ (C-11), 178.6 (C-24), 175.3 (C-35), 173.5 (C-31), 165.7 (C-13), 132.0 (C-12), 74.8 (C-3), 62.1 (C-9), 60.8 (C-18), 52.1 (C-5), 48.1 (C-4), 46.5 (C-8), 45.4 (C-14), 42.6 (C-22), 41.01 (C-19), 40.8 (C-20), 39.3 (C-10), 36.2 (C-1), 35.6 (C-17), 35.0 (C-34), 34.5 (C-7), 34.1 (C-32), 32.5 (C-21), 30.0 (C-28), 29.1 (C-16), 29.1 (C-15), 25.1 (C-23), 25.2 (C-2), 22.1 (C-30), 22.0 (C-33), 22.2 (C-27), 21.8 (C-6), 19.9 (C-26), 18.6 (C-29), 14.7 (C-25);
MS (ESI, MeOH): $m / z=585.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{7}$ (584.78): C 71.89, H 19.15; found: C 71.64, H 19.32.

3-O-[3,4,5-Tris(benzyloxy)benzoyl]- β-boswellic acid (40)

To a suspension of 3,4,5-tri- O-benzyl-benzoic acid $(0.34 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry DCM (10 ml) containing dry DMF (2 drops) oxalyl chloride ($0.38 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added, and the mixture was stirred at $30^{\circ} \mathrm{C}$ for 2 h . The solvents were removed under diminished pressure, dry toluene (2 mL) was added and removed under diminished pressure. The residue (crude 39) was dissolved in dry pyridine (2 mL), and a solution of $\mathbf{1}(410 \mathrm{mg}, 0.90 \mathrm{mmol})$ in dry pyridine $(5 \mathrm{~mL})$ was added. After stirring for two days at $25^{\circ} \mathrm{C}$, water (0.5 mL) was added, and the mixture was stirred for several minutes. Usual aq. work-up followed by extraction with DCM (5 x 30 mL) and chromatography (silica gel, hexane/diethyl ether 4:1 $+1 \%$ acetic acid) gave $40(493 \mathrm{~g}, 63 \%)$ as a colorless solid m.p. $140-143{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+19.3^{\circ}(c=1.10$, CHCl_{3});
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=7.46-7.31(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}$, aryl), $5.55(t, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.19-5.10 ($m, 1 \mathrm{H}, \mathrm{H}-12$), $5.14(s, 4 \mathrm{H}$, benzyl), $5.10(s, 2 \mathrm{H}$, benzyl), 2.34-2.21 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.07-1.83 ($m, 5 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}, \mathrm{H}-15 \mathrm{a}$, H-16a), 1.83-1.70 ($m, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), 1.70-1.65 ($m, 1 \mathrm{H}, \mathrm{H}-9$), 1.65-1.54 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-5, \mathrm{H}-7 \mathrm{a}$), 1.52-1.45 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 1.45-1.34 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, H-21a, H-22a), 1.34-1.27 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-19$), 1.26 ($b s, 4 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}, \mathrm{H}-23$), 1.24-1.14 ($m, 1 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}$), 1.09 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.07 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.02-0.97 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 0.96(s, 3 \mathrm{H}, \mathrm{H}-25), 0.92(s, 3 \mathrm{H}$, $\mathrm{H}-30), 0.92-0.82(m, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}, \mathrm{H}-20), 0.81(s, 3 \mathrm{H}$, $\mathrm{H}-28), 0.70(d, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone $-\mathrm{d}_{6}$): $\delta=181.5$ (C-24), 164.7 (C-31), 152.5 (aryl), 142.4 (aryl, 139.7 (C-13), 137.3 (aryl), 136.2 (aryl), 128.4 (aryl), 128.1 (aryl), 128.0 (aryl), 127.7 (aryl), 127.6 (aryl), 125.5 (aryl), 124.4 (C-12), 108.5 (aryl), 75.1 (benzyl), 73.8 (C-3), 71.0 (benzyl), 59.0 (C-18), 51.2 (C-5), 47.2 (C-9), 47.0 (C-4), 42.0 (C-14), 41.6 (C-22), 40.0 (C-8), 39.7 (C-19), 39.4 (C-20), 37.5 (C-10), 35.1 (C-1), 33.9 (C-7), 33.5 (C-17), 31.5 (C-21), 28.6 (C-28), 28.1 (C-16), 26.2 (C-15), 24.1 (C-23), 23.9 (C-2), 23.4 (C-11), 23.3 (C-27), 21.2 (C-30), 19.6 (C-6), 17.3 (C-29), 16.9 (C-26), 13.3 (C-25) ppm;
MS (ESI, MeOH): $m / z=879.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{58} \mathrm{H}_{70} \mathrm{O}_{7}$ (879.17): C 79.24, H 8.03; found:

C 79.02, H 8.27.

3-O-[3,4,5-Tris(benzyloxy)benzoyl]-11-keto- β boswellic acid (41)

Following the procedure given for the synthesis of 40, from 3 ($200 \mathrm{mg}, 0.44 \mathrm{mmol}$), compound $41(270 \mathrm{mg}$, 69%) was obtained as a colorless solid; m.p. 117-120 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+27.9^{\circ}(c=1.3$, acetone $)$;
${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta=7.54(m, 4 \mathrm{H}$, aryl), 7.53 ($s, 2 \mathrm{H}$, aryl), 7.40 ($m, 8 \mathrm{H}$, aryl), 7.26 ($m, 3 \mathrm{H}$, aryl), 5.55 ($t, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.46 ($s, 1 \mathrm{H}, \mathrm{H}-12$), 5.25 ($s, 2 \mathrm{H}$, benzyl), 5.24 ($s, 2 \mathrm{H}$, benzyl), 5.13 ($s, 2 \mathrm{H}$, benzyl), 2.69 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.58 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 2.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.02 ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$, H-16a), 1.94 ($m, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-15 \mathrm{a}$), $1.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~b}), 1.70$ ($m, 1 \mathrm{H}, \mathrm{H}-5$), 1.62 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.54 ($m, 4 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-18, \mathrm{H}-22 \mathrm{a}$), 1.44 ($m, 1 \mathrm{H}$, $\mathrm{H}-21 \mathrm{a}), 1.39$ ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.32 ($m, 3 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-21 \mathrm{~b}$, $\mathrm{H}-22 \mathrm{~b}$), 1.23 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.22 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.21 ($b s, 4 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}, \mathrm{H}-26$), 0.99 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.96 ($b s$, $4 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-30), 0.86(s, 3 \mathrm{H}, \mathrm{H}-28), 0.74(d, J=6.5$ Hz, 3H, H-29) ppm;
${ }^{13} \mathrm{C}$ NMR (acetone-d $\left.{ }_{6}, 125 \mathrm{MHz}\right): \delta=199.7(\mathrm{C}-11)$, 178.6 (C-24), 166.5 (C-31), 165.5 (C-13), 154.7 (aryl), 144.1 (aryl), 139.6 (aryl), 138.7 (aryl), 132.0 (C-12), 130.4 (aryl), 130.0 (aryl), 129.8 (aryl), 129.7 (aryl), 127.5 (aryl), 110.4 (aryl), 76.6 (benzyl), 75.5 (C-3), 72.4 (benzyl), 62.3 (C-9), 60.7 (C-18), 52.4 (C-5), 48.3 (C-4), 46.7 (C-8), 45.5 (C-14), 42.4 (C-22), 41.0 (C-19), 40.8 (C-20), 39.4 (C-10), 36.8 (C-1), 35.4 (C 17), 34.8 (C-7), 32.6 (C-21), 30.1 (C-28), 29.0 (C-16), 28.9 (C-15), 25.5 (C-24), 25.3 (C-2), 22.6 (C-30), 22.1 (C-27), 20.8 (C-6), 19.8 (C-26), 18.5 (C-29), 14.8 (C-25) ppm;
MS (ESI, MeOH): $m / z=893.8\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{58} \mathrm{H}_{68} \mathrm{O}_{8}$ (893.16): C 78.00, H 7.67; found: C 77.72, H 7.91.

3-O-(3,4,5-Trihydroxybenzoyl)- β-boswellic acid

 (42)A solution of $\mathbf{4 0}(250 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry THF (10 mL) was hydrogenated (atmospheric pressure in the presence of $\mathrm{Pd} / \mathrm{C}(10 \%, 50 \mathrm{mg})$ for 6 h . The catalyst was filtered off, the solvent removed under diminished pressure, and the residue was subjected to chromatography (silica gel, hexane/diethyl ether 1:1 $+1 \%$ acetic acid) to afford $42(164 \mathrm{mg}, 87 \%)$ as an off-white solid; m.p. $202-204{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=49.7^{\circ}(c=$ 0.5 , acetone);
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=7.16$ (s, 2 H , aryl), $5.44(t, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22(t, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12$), 2.31-2.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.15-2.01 (m , 1H, H-16a), 2.01-1.87 ($m, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$, $\mathrm{H}-15 \mathrm{a}), 1.86-1.80(m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 1.79-1.62(m, 4 \mathrm{H}$, H-2b, H-5, H-7a, H-9), 1.61-1.52 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), 1.511.42 ($m, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-22 \mathrm{a}$), 1.42-1.34 ($m, 4 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, H-18, H-19, H-21a), 1.34-1.29 ($m, 2 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}$, $\mathrm{H}-22 \mathrm{~b}), 1.27$ ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.20 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.14 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.11-1.03 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.01 ($s, 3 \mathrm{H}$, $\mathrm{H}-25), 0.95$ ($s, 3 \mathrm{H}, \mathrm{H}-30$), $0.94-0.85$ ($m, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$,
$\mathrm{H}-20), 0.83(s, 3 \mathrm{H}, \mathrm{H}-28), 0.82(d, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, H-29) ppm;
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , acetone-d6): $\delta=179.3$ (C-24), 166.7 (C-31), 147.2 (aryl), 141.4 (C-13), 139.7 (aryl), 126.5 (C-12), 123.4 (aryl), 110.7 (aryl), 75.2 (C-3), 61.01 (C-18), 52.6 (C-5), 49.0 (C-9), 48.7 (C-4), 44.1 (C-8), 43.1 (C-22), 41.7 (C-14), 41.4 (C-19), 41.3 (C-20), 39.1 (C-10), 36.9 (C-1 -), 35.4 (C-17), 35.0 (C-7), 32.7 (C-21), 30.1 (C-28), 29.9 (C-16), 28.4 (C-15), 25.3 (C-23), 25.2 (C-2), 25.0 (C-11), 24.8 (C-27), 22.8 (C-30), 21.5 (C-6), 19.2 (C-29), 18.6 (C-26), 15.1 (C-25) ppm;
MS (ESI, MeOH): $m / z=607.6\left([\mathrm{M}-\mathrm{H}]^{-}\right)$; analysis calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{O}_{7}$ (608.80): C 72.99, H 8.61; found: C 72.77, H 8.81.

3-O-(3,4,5-Trihydroxybenzoyl)-11-keto- β -
 boswellic acid (43)

Following the procedure given for the synthesis of 42, hydrogenation of $41(200 \mathrm{mg}, 0.22 \mathrm{mmol})$ gave 43 ($113 \mathrm{mg}, 81 \%$) as a colorless solid; m.p. $224-227^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}=+38.3^{\circ}(c=0.9$, acetone);
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right): \delta=7.16(s, 2 \mathrm{H}, \mathrm{Ar}-$ H), $5.51(s, 1 \mathrm{H}, \mathrm{H}-12), 5.45(t, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 2.58 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.59-2.51 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 2.36-2.25 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.21 ($d t, J=13.7 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{a}$), 2.01-1.88 ($m, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-15 \mathrm{a}$), 1.87-1.80 ($m, 2 \mathrm{H}, \mathrm{H}-$ 6b, H-7a), 1.70-1.62 ($m, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-2 \mathrm{~b}$), 1.64-1.56 ($m, 1 \mathrm{H}, \mathrm{H}-18$), 1.55-1.47 ($m, 3 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-19, \mathrm{H}-22 \mathrm{a}$), 1.44 ($b s, 4 \mathrm{H}, \mathrm{H}-21 \mathrm{a}, \mathrm{H}-27$), 1.43-1.34 ($m, 3 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, $\mathrm{H}-21 \mathrm{~b}, \mathrm{H}-22 \mathrm{~b}$), 1.33-1.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}$), 1.26 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.23 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.21 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 1.08-1.00 (m, 1H, H-16b), 0.98 (bs, 4H, H-20, H-30), $0.85(s, 3 \mathrm{H}, \mathrm{H}-28), 0.82(d, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-29)$ ppm;
${ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right): \delta=199.7(\mathrm{C}-11)$, 178.9 (C-24, COOH), 166.7 (C-31), 165.7 (C-13), 147.1 (C_{ar}), $139.9\left(\mathrm{C}_{\mathrm{ar}}\right), 132.0(\mathrm{C}-12), 123.2\left(\mathrm{C}_{\mathrm{ar}}\right)$, 110.7 ($\mathrm{C}_{\text {ar }}$), 75.1 (C-3), 62.4 (C-9), 60.7 (C-18), 52.4 (C-5), 48.4 (C-4), 46.7 (C-8), 45.3 (C-14), 42.6 (C-22), 41.0 (C-20), 40.8 (C-19), 39.3 (C-10), 36.5 (C-1), 35.7 (C-17), 34.8 (C-7), 32.7 (C-21), 30.0 (C-28), 29.0 (C-16), 28.9 (C-15), 25.4 (C-23), 25.2 (C-2), 22.3 (C-30), 22.1 (C-27), 20.8 (C-6), 20.1 (C-26), 18.9 (C-29), 14.89 (C-25);
MS (ESI, MeOH): $m / z=623.6\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{O}_{8}$ (622.78): C 71.36, H 8.09; found: C 71.17, H 8.35 .

3-O-(trans-3-Phenylpropenoyl)-11-keto- β boswellic acid methyl ester (45)

To a solution of trans cinnamic acid chloride (668 mg , $4.0 \mathrm{mmol})$ in dry DCM (20 mL), a solution of 26 (300 $\mathrm{mg}, 0.62 \mathrm{mmol}$) containing DMAP (cat.) in dry pyridine (5 mL) and dry DCM (15 mL) was added. After stirring at $25{ }^{\circ} \mathrm{C}$ overnight, the solvents were removed under diminished pressure, and the residue was subjected to chromatography (silica gel, hexane/ethyl acetate $9: 1 \rightarrow 7: 1)$ to afford $45(278 \mathrm{mg}$, 73%) as an off-white amorphous solid; $[\alpha]_{\mathrm{D}}=36.3^{\circ}$ ($c=2.20, \mathrm{CHCl}_{3}$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69(d, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-34), 7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-37+\mathrm{H}-39), 7.36(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-36, \mathrm{H}-38, \mathrm{H}-40), 6.46$ ($d, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33$), 5.54 ($s, 1 \mathrm{H}, \mathrm{H}-12$), 5.46 (virt. $t, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 3.69 ($s, 3 \mathrm{H}, \mathrm{H}-31$), 2.56 (virt. $d t, J=13.3,3.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.45$ ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.27 ($m, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{a}$), 2.10 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-16 \mathrm{a}$), 1.90 (virt. $d t, J=13.7,5.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{a}), 1.82$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.77 ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.68 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), $1.53(d d, 1 \mathrm{H}, J=11.2,1.2$ $\mathrm{Hz}, \mathrm{H}-18), 1.50$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), 1.45 ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$, $1 \mathrm{H}, \mathrm{H}-21 \mathrm{a}), 1.39$ ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.37 ($s, 3 \mathrm{H}, \mathrm{H}-27$), $1.35(m, 1 \mathrm{H}, \mathrm{H}-5), 1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}), 1.25(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-21 \mathrm{~b}$), 1.21 ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.20 ($m, 1 \mathrm{H}$, $\mathrm{H}-15 \mathrm{~b}), 1.18$ ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.06 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.99 ($m, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), $0.94(s, 3 \mathrm{H}, \mathrm{H}-30), 0.91$ ($m, 1 \mathrm{H}, \mathrm{H}-$ 20), 0.82 ($s, 3 \mathrm{H}, \mathrm{H}-28$), 0.79 ($d, 3 \mathrm{H}, \mathrm{H}-29, J=6.6 \mathrm{~Hz}$) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 176.1$ (C-24), 166.1 (C-31), 164.8 (C-13), 144.8 (C34), 134.4 (C35), 130.5 (C-12), 130.2 (C-38), 128.8 (C-36 $+\mathrm{C}-40), 128.0$ (C-37 + C-39), 118.5 (C-33), 73.3 (C-3), 60.4 (C-9), $59.0(\mathrm{C}-18), 51.6$ (C-31), 50.6 (C-5), 46.8 (C-4), 45.1(C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.2 (C-10), 34.8 (C-1), 34.0 (C-17), 32.9 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9 (C-23), 23.7 (C-2), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.1 (C-25) ppm;
MS (ESI, MeOH): $m / z=615.6\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{5}$ (614.85): C 78.14, H 8.85; found: C 78.00, H 8.98.

3-O-[trans-3-(3,4-Diallyloxyphenyl)-propenoyl]-11-keto- β-boswellic acid methyl ester (47)

A solution of trans-3-(3,4-diallyloxyphenyl)propenoic acid ($521 \mathrm{mg}, 2.0 \mathrm{mmol}$) and thionyl chloride $(0.6 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry $\mathrm{DCM}(10 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 4 h . The volatiles were removed under reduced pressure, and the residue (46) was dissolved in dry DCM (20 mL). This solution was added to a solution containing 26 ($386 \mathrm{mg}, 0.4 \mathrm{mmol}$), DMAP ($98 \mathrm{mg}, 0.8 \mathrm{mmol}$) and dry pyridine (5 mL) in dry DCM (10 mL). Usual aq. workup after stirring overnight at $25^{\circ} \mathrm{C}$, followed by chromatography (silica gel, hexane/ethyl acetate, 8:2) gave 47 (200 $\mathrm{mg}, 69 \%)$ as an amorphous white solid; $[\alpha]_{\mathrm{D}}=20.3^{\circ}$ ($c=5.40, \mathrm{CHCl}_{3}$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(d, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-34)$), 7.07 ($d d, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-40$), 7.05 $(d, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-39), 6.85(d J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-36), 6.27 ($d, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33)$), 6.05 ($m, 2 \mathrm{H}$, H-42, H-45), 5.53 ($s, 1 \mathrm{H}, \mathrm{H}-12$), 5.44 (virt. $t, J=2.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.40+5.23$ ($m, 4 \mathrm{H}, \mathrm{H}-43, \mathrm{H}-46$)), 4.61 ($m, 4 \mathrm{H}, \mathrm{H}-41, \mathrm{H}-44$), 3.68 ($s, 3 \mathrm{H}, \mathrm{H}-31$)), 2.54 (ddd, $J=13.3,3.3 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 2.44(s, 1 \mathrm{H}$, H-9), 2.24 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.09 (virt. $d t, J=13.7,5.0$ $\mathrm{Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 1.89 (virt. $d t, J=13.7,5.0$, $13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{a}), 1.84$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 1.76 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~b}), 1.68$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 1.53 ($d, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-18), 1.48(m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}), 1.46(d d, J=$
$2.1,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.44$ ($m, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-21$), 1.39 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($s, 3 \mathrm{H}, \mathrm{H}-27$), 1.32 ($m, 1 \mathrm{H}$, $\mathrm{H}-22 \mathrm{a}), 1.25$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 1.22 ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.20$ ($s, 3 \mathrm{H}, \mathrm{H}-23$), 1.18 ($s, 3 \mathrm{H}, \mathrm{H}-26$), 1.05 ($s, 3 \mathrm{H}, \mathrm{H}-25$), 0.98 (virt. dt, $J=13.3,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 0.93 ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.90 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20$), 0.81 ($s, 3 \mathrm{H}, \mathrm{H}-28$), $0.79(d, 3 \mathrm{H}, \mathrm{H}-29, J=6.6 \mathrm{~Hz}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.2(\mathrm{C}-11), 176.1$ (C-24), 166.3 (C-32), 164.7 (C-13), 150.7 (C $\mathrm{C}_{\text {arom. }}$), 148.5 (Carom.), 144.6 (Carom.), 133.1 ($\mathrm{CH}=\mathrm{CH}_{2}$), 132.9 $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 130.5(\mathrm{C}-12), 127.6\left(\mathrm{C}_{\text {arom. }}\right)$, 122.6 $(\mathrm{C}-40), 117.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 117.9\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 116.3$ $(\mathrm{CH}=\mathrm{CH}), 113.5\left(\mathrm{C}_{\text {aromat. }}\right), 113.1\left(\mathrm{C}_{\text {aromat. }}\right)$, $73.1(\mathrm{C}-3)$, 70.1 (C41), 69.7 (C44), 60.4 (C-9), 59.0 (C-18), 51.6 (C-31), 50.6 (C-5), 46.9 (C-4), 45.1 (C-8), 43.7 (C-14), 40.9 (C-22), 39.3 (C-19), 39.3 (C-20), 37.2 (C-10), 34.9 (C-1), 33.9 (C-17), 32.9 (C-7), 30.9 (C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9 (C-23), 23.8 (C-2), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.1 (C-25) ppm; MS (ESI, MeOH): $m / z=727.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{O}_{7}$ (726.98): C 76.00, H 8.60; found C 75.78, H 8.83 .

3-O-[trans-3-(3,4-Dihydroxyphenyl)-propenoyl]-11-keto- β-boswellic acid methyl ester (48)

A solution of $47(100 \mathrm{mg}, 0,14 \mathrm{mmol})$, morpholine ($122 \mathrm{mg}, 1,4 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg})$ in dry DCM (20 mL) was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . The solvents were removed under reduced pressure, and the residue was subjected to chromatography (hexane/ethyl acetate, 7:3) to yield $\mathbf{4 8}$ (70 mg, 78\%) as an off white, amorphous solid; $[\alpha]_{\mathrm{D}}=35.6^{\circ}(c=$ 6.64, MeOH);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55(d, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz} \mathrm{H}-34), 7.07(d, 1 \mathrm{H}, J=2.1 \mathrm{H}-36), 6.97(d d$, $1 \mathrm{H}, J=8.3,2.1 \mathrm{~Hz}, \mathrm{H}-40), 6.84(d, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-$ 39), $6.26(d, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{H}-33), 5.54(s, 1 \mathrm{H}$, $\mathrm{H}-(12), 5.44(d d, 1 \mathrm{H}, J=2.5,2.9 \mathrm{~Hz} \mathrm{H}-3), 3.68$ ($s, 3 \mathrm{H}, \mathrm{H}-31$), 2.55 ($d d d, 1 \mathrm{H}, J=13.3,2.9,3.3 \mathrm{~Hz}$, $\mathrm{H}-1 \mathrm{~b}$), 2.46 ($s, 1 \mathrm{H}, \mathrm{H}-9$), 2.24 ($m, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.09 (virt. dt, 1H, J=13.7, 5.0, 13.7 Hz, H-16a), 1.89 (virt. $d t, 1 \mathrm{H}, J=13.7,5.0,13.7, \mathrm{H}-15 \mathrm{a}), 1.84(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{a}), 1.76$ ($m, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 1.66 ($m, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-7 \mathrm{a}$), $1.53(d, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}-18), 1.48$ ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{~b}$), $1.46(d d, 1 \mathrm{H}, J=2.5,9.1 \mathrm{~Hz}, \mathrm{H}-5), 1.44(m, 3 \mathrm{H}$, H-7b, H-21a, b), 1.38 ($m, 1 \mathrm{H}, \mathrm{H}-19$), 1.36 ($s, 3 \mathrm{H}, \mathrm{H}-$ 27)), 1.31 ($m, 1 \mathrm{H}, \mathrm{H}-22 \mathrm{a}$), 1.26 ($m, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}), 1.22$ ($m, 1 \mathrm{H}, \mathrm{H}-15 \mathrm{~b}), 1.19$ ($s, 3 \mathrm{H}, \mathrm{H}-23$), $1.18(s, 3 \mathrm{H}$, $\mathrm{H}-26), 1.05(s, 3 \mathrm{H}, \mathrm{H}-25), 0.99(d d d, 1 \mathrm{H}, J=13.3$, $2.1,2.5 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{~b}), 0.92$ ($s, 3 \mathrm{H}, \mathrm{H}-30$), 0.90 ($m, 1 \mathrm{H}$, $\mathrm{H}-20), 0.81(s, 3 \mathrm{H}, \mathrm{H}-28), 0.77(d, 3 \mathrm{H}, J=6,2 \mathrm{~Hz}, \mathrm{H}-$ 29) ppm;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.0(\mathrm{C}-11), 176.2$ (C-24), 166.8 (C-32), 165.9 (C-13), 146.5 (C-38), 145.1 (C-34), 144.1 (C-37), 130.2 (C-12), 127.4 (C-35), 122.2 (C-40), 115.8 (C-33), 115.3 (C-39), 114.3 (C-36), 73.3 (C-3), 60.4 (C-9), 59.1 (C-18), 51.6 (C-31), 50.6 (C-5), 46.9 (C-4), 45.1 (C-8), 43.8 (C-14), 40.9 (C-22), 39.3 (C-19), 39.2 (C-20), 37.2 (C-10), 34.8 (C-1), 34.0 (C-17), 30.8 (C-7), 30.3
(C-21), 28.8 (C-28), 27.5 (C-16), 27.2 (C-15), 23.9
(C-23), 23.7 (C-2), 21.1 (C-30), 20.5 (C-27), 18.8 (C-6), 18.3 (C-26), 17.4 (C-29), 13.2 (C-25) ppm;
MS (ESI, MeOH): $m / z=647.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; analysis calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{7}$ (646.85): C 74.27, H 8.41; found: C 74.01, H 8.57.

References

1 - Z. Y. Du, Z. L. Liu, Z. C. Ning, Y. Y. Liu, Z. Q. Song, C. Wang, A. P. Lu, Prospects of Boswellic Acids as Potential Pharmaceutics, Planta Med., 2015, 81, 259-271.
2 - H. Hussain, A. Al-Harrasi, R. Csuk, U. Shamraiz, I. R. Green, I. Ahmed, I. A. Khan, Z. Ali, Therapeutic potential of boswellic acids: a patent review (1990-2015), Expert Opin. Ther. Pat., 2017, 27, 81-90.
3 - P. R. Vuddanda, S. Singh, S. Velaga, Boswellic acid - Medicinal use of an ancient herbal remedy, J. Herb. Med., 2016, 6, 163-170.

4 - http://www.boswellin.com/page3.htm; last accessed 22.03.2017
5 - M. Alam, H. Khn, L. Samiullah, K. M. Siddique, A review on phytochemical and pharmacological studies of Kundur (Boswellia serrata Roxb ex Colebr) - a Unani drug, J. Appl. Pharmacl. Sci. 2012, 2, 148-156.
6 - R. Csuk, A. Niesen-Barthel, R. Schäfer, A. Barthel, A. Al-Harrasi, Synthesis and antitumor activity of ring A modified 11-keto-beta-boswellic acid derivatives, Eur. J. Med. Chem., 2015, 92, 700-711.
7 - R. Csuk, A. Barthel-Niesen, D. Ströhl, R. Kluge, C. Wagner, A. Al-Harrasi, Oxidative and reductive transformations of 11-keto-betaboswellic acid, Tetrahedron, 2015, 71, 20252034.

8 - R. Csuk, A. Barthel-Niesen, A. Barthel, R. Schäfer, A. Al-Harrasi, 11-Keto-boswellic acid derived amides and monodesmosidic saponins induce apoptosis in breast and cervical cancers cells, Eur. J. Med. Chem., 2015, 100, 98105.

9 - R. Kaur, S. Khan, R. Chib, T. Kaur, P.R. Sharma, J. Singh, B.A. Shah, S.C. Taneja, A comparative study of proapoptotic potential of cyano analogues of boswellic acid and 11-ketoboswellic acid, Eur. J. Med. Chem., 2011, 46, 1356-1366.
10 - P. H. Fan, T. Li, Y. Q. Ye, Q. Luo, H. Q. Yuan, H. X. Lou, Synthesis and cytotoxic activity of boswellic acid analogues, Phytochem. Lett., 2016, 18, 99-104.
11 - Y. Shao, C. T. Ho, C. K. Chin, V. Badmaev, W. Ma, M..T. Huang, Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture, Planta Med., 1998, 64, 328-331.
12 - S. Kapoor, Boswellic acid and its inhibitory effect on tumor growth in systemic malignancies:
an emerging concept in oncology, Future Oncol., 2013, 9, 627-628.
13 - E. Ernst, Frankincense: systematic review, Brit. Med. J., 2008, 337, a2813
14 - J. Jauch, J. Bergmann, An efficient method for the large-scale preparation of 3-O-acetyl-11-oxo-beta-boswellic acid and other boswellic acids, Eur. J. Org. Chem., 2003, 4752-4756.
15 - X. D. Su, H. Lawrence, D. Ganeshapillai, A. Cruttenden, A. Purohit, M. J. Reed, N. Vicker, B. V. L. Potter, Novel 18 beta-glycyrrhetinic acid analogues as potent and selective inhibitors of 11 beta-hydroxysteroid dehydrogenases, Bioorgan. Med. Chem., 2004, 12, 4439-4457.
16 - S. Shibata, K. Takahashi, S. Yano, M. Harada, H. Saito, Y. Tamura, A. Kumagai, K. Hirabayashi, M. Yamamoto, N. Nagata, Chemical Modification of Glycyrrhetinic Acid in Relation to the Biological-Activities, Chem. Pharm. Bull., 1987, 35, 1910-1918.
17 - R. Pellegata, M. Pinza, G. Pifferi, C. Farina, A new reduction of the enone system of 18β glycyrrhetic acid, Org. Prep. Proced. Int., 1999, 31, 181-187.
18 - M. Ota, P. J. Houghton, Boswellic acids with acetylcholinesterase inhibitory properties from frankincense, Nat. Prod. Commun., 2008, 3, 2126.

19 - A. Henkel, N. Kather, B. Mönch, H. Northoff, J. Jauch, O. Werz, Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference, Biochem. Pharmacol., 2012, 83, 115-121.
20 - U. Siemoneit, A. Koeberle, A. Rossi, F. Dehm, M. Verhoff, S. Reckel, T.J. Maier, J. Jauch, H. Northoff, F. Bernhard, V. Doetsch, L. Sautebin, O. Werz, Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense, Br. J. Pharmacol., 2010, 162, 147-162.
21 - O. Werz, U. Siemoneit, A. Henkel, J. Jauch, N. Kather, Use of boswellic acids and synthetic boswellic acid derivatives for inhibiting microsomal prostaglandin E2 synthase and cathepsin G, 2009, DE102008015607A1; CAPLUS AN 2009:1260458.
22 - L. Ali, J. Hussain, A. Al-Rawahi, A. Al-Harrasi, Two New and Four Known Triterpenoids from Boswellia sacra Fluckiger, Rec. Nat. Prod., 2014, 8, 407-411.
23 - B. Mahajan, S. C. Taneja, V. K. Sethi, K. L. Dhar, 2 Triterpenoids from Boswellia-Serrata Gum Resin, Phytochemistry, 1995, 39, 453-455.
24 - S. Schweizer, A. F. W. von Brocke, S. E. Boden, E. Bayer, H. P. T. Ammon, H. Safayhi, Workup-dependent formation of 5-lipoxygenase
inhibitory boswellic acid analogues, J. Nat. Prod., 2000, 63, 1058-1061.
25 - S. Rozen, I. Shahak, E. D. Bergmann, Reactions of Ring-C in Glycyrrhetic Acid-Derivatives, Israel J. Chem., 1975, 13, 234-246.
26 - K. Sasaki, N. Minowa, H. Kuzuhara, S. Nishiyama, Preventive effects of soyasapogenol B derivatives on liver injury in a concanavalin A-induced hepatitis model, Bioorgan. Med. Chem., 2005, 13, 4900-4911.
27 - M. Tsukahara, T. Nishino, I. Furuhashi, H. Inoue, T. Sato, H. Matsumoto, Synthesis and inhibitory effect of novel glycyrrhetinic acid derivatives on IL-1 beta-induced prostaglandin E-2 production in normal human dermal fibroblasts, Chem. Pharm. Bull., 2005, 53, 1103-1110.
28 - B. A. Shah, A. Kumar, P. Gupta, M. Sharma, V. K. Sethi, A. K. Saxena, J. Singh, G. N. Qazi, S. C. Taneja, Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids, Bioorg. Med. Chem. Lett., 2007, 17, 6411-6416.
29 - R. Csuk, A. Niesen-Barthel, A. Barthel, R. Kluge, D. Ströhl, Synthesis of an antitumor active endoperoxide from 11-keto-beta-boswellic acid, Eur. J. Med. Chem., 2010, 45, 3840-3843.
30 - G. Bartoli, M. Bosco, M. Locatelli, E. Marcantoni, P. Melchiorre, L. Sambri, Unusual and unexpected reactivity of t-butyl dicarbonate ($\mathrm{Boc}(2) \mathrm{O}$) with alcohols in the presence of magnesium perchlorate. A new and general route to t-butyl ethers, Org. Lett., 2005, 7, 427-430.
31 - L. Heller, V. Perl, J. Wiemann, A. Al-Harrasi, R. Csuk, Amino(oxo)acetate moiety: A new functional group to improve the cytotoxicity of betulin derived carbamates, Bioorg. Med. Chem. Lett., 2016, 26, 2852-2854.
32 - A. P. Kozikowski, W. Tückmantel, Y. H. Hu, Studies in polyphenol chemistry and bioactivity. 3. Stereocontrolled synthesis of epicatechin-4 alpha, 8 -epicatechin, an unnatural isomer of the B-type procyanidins, J. Org. Chem., 2001, 66, 1287-1296.
33 - A. Anikin, M. Maslov, J. Sieler, S. Blaurock, J. Baldamus, L. Hennig, M. Findeisen, G. Reinhardt, R. Oehme, P. Welzel, Synthesis of a 1 alpha-amino-1-deoxy analogue of forskolin, Tetrahedron, 2003, 59, 5295-5305.
34 - P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. Mcmahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, New Colorimetric Cytotoxicity Assay for AnticancerDrug Screening, J. Natl. Cancer Inst., 1990, 82, 1107-1112.
$35-$ F. A. Badria, B. R. Mikhaeil, G. T. Maatooq, M. A. Mohamed, Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood, Z. Naturforsch., 2003, 58C, 505-516.

[^0]: *Corresponding author: René Csuk
 Email address: rene.csuk@chemie.uni-halle.de
 DOI: http://dx.doi.org/10.13171/mjc64/01707151548-csuk

