

Mediterranean Journal of Chemistry 2018, 7(4), 303-307

New polyoxygenated polyketide from pathogenic fungus *Cylindrocarpon destructans* with α-glycosidase inhibitory activity

Dilfaraz Khan ^{1,2}, Shahid Ullah Khan ³, Shah Iram Niaz ², Muhammad Haroon ⁴, Kamran Tahir ², Syed Badshah ², Shafiullah Khan ², Salahud din ⁵ and Lui Lan ¹

¹ School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China

² Institute of Chemical Sciences, Gomal University Dera Ismail Khan 29050, KPK, Pakistan

³College of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan 430070, China

⁴College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, China

⁵ Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.

Abstract: Phytochemical investigation on pathogenic fungus *Cylindrocarpon destructans* isolated form *Meconopsisgrandis* plant led to the isolation of one new polyoxygenated polyketides, namely cylindrocarpolide A along with five known compounds. The structures of the isolated compounds were elucidated by 1D and 2D NMR and mass spectroscopic data analysis. The isolated compounds were evaluated for α -glycosidase inhibition activity. The compounds isolated compounds were found to have strong to weak inhibition against the α -glycosidase enzymes.

Keywords: Pathogenic fungus, Cylindrocarpon destructans, Meconopsis grandis, α-glycosidase.

Introduction

Species of *Cylindrocarpon*Wollenw. are common and may be isolated as soil inhabitants, saprobes on dead plant material, root colonizers or pathogens, or weak pathogens of various herbaceous and woody plants ¹. *Cylindrocarpon* destructans (Zinnsm.) [anamorph of *Neonectria* radicicola] and *C. obtusisporum* have been reported to cause the root rots of various hosts ^{2,3}, and a black foot disease of grapevines ⁴⁻⁶. *C. destructans* (*C. radicicola*) has frequently been reported to cause decay of woody seedlings, especially conifers, and many other hosts as well ². Generally, this fungus is not severe in its pathogenicity and has been regarded in many cases as the infectious wound fungus or the secondary invader.

Cylindrocarpon species have been rarely associated with human disease. They are known to cause post-traumatic keratitis ^{7,8} and have been implicated in mycetoma following injury ^{9,10}, athlete's foot ¹¹, peritonitisina case of continuous ambulatory peritoneal dialysis ¹², localized invasive lesion in a case of AML ¹³, disseminate disinfection in neutropenic patients ¹⁴, Tinea pedis ¹⁵, Cutaneous infection ¹⁶. The human-infecting species include *C. cyanescens, C. destructans, C. lichenicola* and *C. vaginae* ¹⁷.

**Corresponding author: Dilfaraz Khan Email address: <u>dilfarazkhan@gu.edu.pk</u>* DOI: <u>http://dx.doi.org/10.13171/mjc74181124-dilfaraz</u> Previous phytochemical studies on *Cylindrocarpon* species have resulted in the isolation of Orsenol, Orsellinic acid, Ilicicolin (A-F), Ascochlorin, fatty acids ¹⁸, Cylindrols ¹⁹, Cylindrocyclin ²⁰ Colletorine, Colletochlorin and Curvularine derivatives ²¹.

Only a few metabolites such as radicicol and radicicolin 22 have been reported from *Cylindrocarpon destructans* (*C. radicola*). In this paper we reported the isolation, characterization and biological activities of one new polyketide (**1**) and five compounds (**2-6**) from *Cylindrocarpon destructan*.

Experimental Section

General

Optical rotations were measured with an Abbemat 300 spectrometer. NMR spectra were recorded with a Bruker Avance 400 (400 MHz for ¹H and 100 MHz for ¹³C spectrometer (Bruker Corporation, Switzerland). HRESIMS spectra were recorded using an LTQ-Orbitrap LC-MS spectrometer (Thermo Corporation, USA). UV spectra were recorded on a Blue Star A spectrophotometer. Thin layer chromatography silica gel GF₂₅₄ (Qingdao Marine Chemical, Factory PR China) were used for TLC. Sephadex LH-20 (Amersham Pharmacia) and Silica gel (100-200, 200-

Received June 4, 2018 Accepted July 4 24, 2018 Published November 24, 2018

Fungal material

The fungal strain *Cylindrocarpon destructans* (Gen accession number KC904953) was isolated from fresh roots of *Meconopsisgrandis* (Tibetan Blue puppy) in Tibetan Plateau near to Damxung, Tibet, China. The fungus was identified by using morphological characteristics and International transcribed spacer region. A voucher specimen (DH 29) has been preserved on PDA at 4°C at the school of marine science, Sun Yat-Sen University.

Fermentation, extraction and fractionation

The fungal strain was cultured for 6 days at 28 $^{\circ}$ C in Petri dishes containing Potato dextrose agar. The agar supported mycelia were then cut and transferred to 1000 mL Erlenmeyer flasks containing 500 mL potato dextrose broth (12 gm of PDB dissolved in 500 mL of 3% saline water) and then incubated at 28 $^{\circ}$ C for 5 days with continuous shaking on a shaker at 150 rpm. Then 10 mL of the fungal broth were added into

rice medium (110 bottles each 1000 mL Erlenmeyer flasks, each containing 60 g rice in 80 mL of 3% saline water) and were incubated for 30 days under static conditions and light. After incubation, the mycelia cultivated rice medium were crushed and extracted three times with methanol. The methanol extract was concentrated with a rotary evaporator to get methanolic crude which was then suspended in 20% MeOH-H₂0. The suspension was then fractionated with n-hexane, chloroform, ethyl acetate to get the corresponding n-hexane (15 g), Chloroform (26 g) and ethyl acetate (44 g) fractions. The n-hexane fraction was further divided into 6 subfractions (D-I) by silica gel CC with gradient elution of pet ether/CH2Cl2 (from 100:00 to 30:70). The chloroform extract was separated into 7 sub-fractions (J-P) by silica gel column chromatography by a gradient elution of petroleum ether/CH2Cl2 (from 90:10 to 00:100) and then CH₂Cl₂/MeOH (from 100:00 to 00:100). Ethyl acetate fraction was further

fractionated over silica gel column chromatography with gradient elution of pet ether Ether/EtOAc

(100:00-00:100) and then EtOAc/MeOH (100:00 to

00:100) to get 9 fractions (Q-Y).

Table 1. ¹H (400 MHz) and ¹³C (100MHz) NMR data for Compound 1.

	. ,	· •	
Position	$\delta H (J \text{ in } Hz)$	δC	HMBC Correlation
1			
2		151.9	
3	7.57 (1H, s)	109.6	2, 3a, 7a
3a		125.7	
4		118.3	
5		123.1	
6		127.2	
7		141.0	
7a		142.5	
8	10.55 (1H, s)	189.5	4
9		135.5	
10		118.7	
10a		113.2	
11		171.1	
12			
13	5.12 (2H,s)	66.9	10a, 11, 13a
13a		138.9	
14		150.7	
15		132.4	
16	9.61 (1H, s)	195.4	10
17	2.71 (3H, s)	11.9	9, 14, 15
18	2.14 (3H, s)	8.7	5, 6, 7
19	2.46 (3H, s)	10.2	4, 5, 6

Purification of the compounds

Fr. G was further re-chromatograhed over silica gel CC eluted with Pet-ether: $CH_2Cl_2(100:00 \text{ to} 00:100)$ to get five subfractions (G-1 to G-5). Fraction G-2 (32 mg) was further purified by Sephadex LH-20 with Pet-ether/CH₂Cl₂/MeOH (1:1:1) to afford colorless oil of compound **2** (12 mg). Fraction N was subjected to silica gel CC eluted with CH₂Cl₂/MeOH (100:00 to 70:30) to get five subfractions (N1-N5). Fr. N-3 (was further separated by Sephadex LH-20 eluted with CH₂Cl₂/MeOH (1:1) to get three fractions (N-3-1 to N-3-3). Fr. N-3-2 (21 mg) was further purified by HPLC (75 % CH₃CN-H₂O flow rate 1.0 ml /min; C₁₈, 10×250 mm, 5 um) to get two pure Compounds (**3** (8 mg) and **4** (6 mg) as a white powder. Fr. P (28 mg) was purified by Sephadex LH-20 with CH₂Cl₂: MeOH (v/v; 1:1) and then by semi-preparative HPLC (65 % MeOH-H₂O flow rate 1.5 ml /min; C₁₈, 10×250 mm, 5 um) to afford a compound **5** (15 mg) as yellow needles.

Fraction T was re-chromatographed over Silica gel CC by gradient elution with EtOAc/MeOH (100:00 to 00:100) to get 7 sub-fractions (T-1 to T-7). Fr. T-6 was applied to semi-preparative HPLC with (80% CH₃CN-H₂O flow rate 1.5 ml/min; C₁₈, 10×250 mm, 5 um) to yield a pure brown amorphous powder of compound **1** (8 mg).

CylindrocarpolideA (1)

Brown amorphous powder. UV (MeOH) λ_{max} (log ϵ): 235 (2.57), 257, 264 (2.41), 274 (2.32), 312 (2.18); HRESIMS *m/z*: 381.0935 [M+H]⁺ (calcd. for C₂₁H₁₆O₇, 381.0929);

¹H NMR and ¹³C NMR (CD₃COCD₃), see Table 1.

Assay for α-Glucosidase Inhibitory Activity

An assay of α -glucosidase inhibitory activity was performed using a reported method, with slight modifications ²³. All the assays were performed using 10 mM KH₂PO₄-K₂HPO₄ buffers, pH 7.0. The enzyme solution was prepared to give 2.0 Units/mL in

2 mL buffer solution. The reaction mixture contained phosphate buffer, pH 7.0 (150 µL), 20 µL of enzyme solution, and 20 µL DMSO or inhibitor (test sample dissolved in DMSO (10 µmol/mL)), and 20 µL of substrate (*p*-nitrophenyl glycoside, 1.5 mg/mL). The inhibitors were pre-incubated with the enzyme at 37 °C for 20 min, and the substrate was then added. The reaction was monitored spectrophotometrically by measuring the absorbance at 400 nm for 1-min intervals. Calculations were performed according to the equation η (%) = [(B - S)/B] × 100% (B stands for the assay medium with DMSO; S stands for the assay medium with inhibitor). All measurements were done in triplicate from two independent experiments. The reported IC₅₀ was the average value of two independent experiments.

Results and discussion

The fungus *Cylindrocarpon* sp. DH 29 was cultured in solid rice medium for 30 days. The CHCl₃ and EtOAc fraction were repeatedly fractionated and purified by using silica gel column chromatography, Sephadex LH-20, reverse phase silica column and HPLC to obtain one new compound (1) and five known compounds (2-6) Figure 1.

Figure 1. Structures of compounds 1-6

Compound **1** was isolated as brown amorphous solid. Its molecular formula was established as $C_{21}H_{16}O_7$ by HRESIMS analysis (m/z 381.0935 [M+H]⁺). The ¹HNMR spectrum displayed a pair of singlets at δ 10.55 and 9.61 attributed to two aldehyde moieties. The resonance observed at δ 5.12 (2H, s) was characteristics of oxymethylene protons. The HMBC correlations of oxymethylene protons with the ester carbon signal at δ 171.1 and with the aromatic carbons C-11 and C-13a suggested the presence of lactone functionality fused with the aromatic ring. The

singlet 3H proton signals at δ 2.71, 2.46, and 2.14 suggested the presence of three methyl groups. The singlet observed at δ 7.57 was attributed to aromatic proton. The proton NMR data was backed up by ¹³C NMR spectrum that displayed peaks at δ 189.5 and 195.4 (characteristics of aldehyde moieties), 151.9-109.6 (aromatic carbon), 171.1 (ester carbonyl moiety) 66.9 (oxymethylene carbon) and 11.9, 10.2 and 8.7 (methyl carbons). Analysis of ¹³C and DEPT experiment revealed the presence of three methine carbons including two aldehyde carbons, one oxygenated methylene, three methyl and 14 quaternary carbons which include one keto group and 13 fully substituted aromatic carbons. In order to determine H-H correlation COSY experiments (Fig. S5) were performed. No COSEY correlation was observed in compound 1, showing that the protons are not adjacent to each other. H-C connectivities were confirmed by HSQC experiment that showed connectivity of respective protons with the corresponding carbons. (Fig. S6, see Supplementary Materials at the bottom). The HMBC correlations (Fig. S7) of H-3 to C-2, C-3a and C-7a, H-13 to C-11, C-10a and C-13a, H-8 to C-8, H-16 to C-10 and the J^2 and J³ correlation of CH₃-17, CH₃-18 and CH₃-19 with the aromatic carbon further confirmed the structure of compound 1. After analysis of the chromatographic data of compound 1 and its close

resemblance with reported literature ²⁴ the structure of the compound was named as *Cylindrocarpolide A*.

The known compounds **2-6** were identified by comparison of their spectral data with the literature available and include *dibutyl phthalate* (2) ²⁵, *curvularin* (3) *dehydrocurvularin* (4) ²⁶ *daidzein* (5) ²⁷ and *flavasperone* (6) ²⁸.

The α -glucosidase inhibiting activity of the isolated compounds was screened *in vitro* along with the acarbose as positive control shown in **Table 2**. The compounds **1**, **5** and **6** showed potent inhibition with IC₅₀ values of 23.4 \pm 0.3, 36.5 \pm 0.5 and 52.6 \pm 0.6 respectively. Compounds **3** and **4** showed moderate anti-diabetic activity with IC₅₀ values of 82.5 \pm 0.8 and 66.3 \pm 0.5. Compound **2** did not show inhibition activity at all.

Γable 2. α-glucosidase	e inhibitory	activity	of compounds	1-6 ^a
-------------------------------	--------------	----------	--------------	-------------------------

Compounds	IC ₅₀ (µM)
1	23.4 ± 0.3
2	>200
3	82.5 ± 0.8
4	66.3 ± 0.5
5	36.5 ± 0.5
6	52.6 ± 0.6
Acarbose ^b	573.6 ± 2.2

^aIC₅₀ values are shown as mean ±SD from two independent experiments; ^b Positive control.

The results indicate that the number and position of hydroxyl groups also effect the inhibition activity as shown by the difference in inhibition of compound 3, 4, 5 and 6. All these findings showed that the compounds may have special interaction in the form of H-bonding with the enzyme. Hence the presence of acidic and hydroxyl groups enhances the activity due to the formation of H-bonding between the substrate and the enzyme. The position of OH group as found in the C-ring of compound 5 also effect the inhibition. Methylation of phenolic OH groups as in compound 6 have a negative effect on the inhibition activity of these compounds. Double bond also enhances the activity as shown by comparing the activity of compounds 3 and 4. Sterically hindered moieties around the binding groups also weaken the interaction between the compounds and the enzyme.

Acknowledgements

Thanks to Guangdong Provincial Ministry of Education for financial support during post-doctorate fellowship at Sun Yat-Sen University, China. Instrumental Analysis and Research Center of Sun Yat-Sen University is specially acknowledged for their assistance in the acquisition of mass spectra regarding this work.

Supplementary material

All the supporting information including NMR and Mass spectra of new compounds are available in the supplementary data.

Conflict of interest

The authors declare no conflict of interest.

Conclusion

Phytochemical studies of the fungus *Cylindrocarpon destructans* DH 29 were carried out using latest chromatographic and spectroscopic techniques. One new and five known compounds were obtained from the cultured rice medium of the mentioned fungus.

The α -glucosidase inhibiting activity of the isolated compounds were screened *in vitro* along with the acarbose as a positive control. The isolated compounds showed strong to weak α -glycosidase inhibitory activity.

The studies also reveal a SAR (structure-activity relationship) between the structural features of compounds and the corresponding glycosidase enzymes but more research is suggested to establish the exact chemistry. It is strongly recommended that future investigation on this fungus should be carried out to explore its hidden medicinal values.

References

- D. Brayford, Cylindrocarpon. In: Methods for research on soil-borne phytopathogenic fungi. (Singleton LL, Mihail JD, Rush M, eds). APS Press, Saint. Paul, U.S.A.**1993**, 103-106.
- C. Booth, The Genus Cylindrocarpon. Mycological Papers No. 104, Commonwealth Mycological Institute, England, pp. 1966,35-37.

- 3- K. A. Seifert, C. R. McMullen, D. Yee, R. D. Reeleder and K. F. Dobinson, Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus *Cylindrocarpon destructans*, Phytopathology, **2003b**, 93, 1533-1542.
- 4- D. R. Maluta and P. Larignon, Pied-noir : mieuxvautprévenir. Viticulture, 1991,11,71-72.
- 5- S. Grasso and S. L. di Magnano, Infections of *Cylindrocarpon obtusisporum* on grape vines in Sicily, Vitis, **1975**, 14, 36-39.
- 6- H. J. Scheck, S. J. Vasquez, D. Fogle and W. D. Gubler, Grape growers report losses to black-foot and grapevine decline, Calif. Agric., 1998a, 52, 19-23.
- 7- J. Kaliamurthy, C. Jesudasan, D. A. Prasanth and P. A. Thomas. Keratitis due to *Cylindrocarpon lichenicola*, J. Postgrad. Med., **2006**, 52, 155-157.
- 8- T. Gaujoux, E. Borsali, J. C. Gavrilov,
 O. Touzeau, P. Goldschmidt and M. O. Despiau.Fungal keratitis caused by *Cylindrocarpon lichenicola*, J. Fr. Ophtalmol., 2012, 35(5), 356.
- D. E. ZoutmanandL. Singler. Mycetoma of the foot caused by *Cylindrocarpon destructans*, J. Clin. Microbiol., **1991**, 29 (9), 1855-1859.
- R. Sharma, C. K. Farmer, W. R. Gransden and C. S. Ogg, Peritonitisin continuous ambulatory peritoneal dialysis due to *Cylindrocarpon lichenicola* infection, Nephrol. Dial. Transplant., **1988**, 13, 2662-2664.
- B. Lancy, C. Blanc and J. Lapalu, *Cylindrocarpon*: a new athlete's foot agent, Bull. Trimest. Soc. Mycolo. Fr., **1985**, 14, 73-76.
- 12- R. Sharma, C.K. Farmer, W. R. Gransden and C. S. Ogg. Peritonitisin continuous ambulatory peritoneal dialysis due to *Cylindrocarpon lichenicola* infection. 25-Nephrol. Dial Transplant., 1988, 13, 2662–2664.
- 13- P. C. Iwen, S. R. Tarantolo, D. A. Sutton, M. G. Rinaldi and S. H. Hinrichs, Cutaneous infections caused by *Cylindrocarpon lichenicola*in a patient with acute leukemia, J. Clin. Microbiol., **2000**, 38 (9), 3375-3378.
- 14- E. A. James, D. K. Orchar, P. H. Mcwhinney, D. W. Warnock, E. M. Johnson and A. B. Mehta, disseminated infection due to *Cylindrocarpon lichenicola* in a patient with acute myeloid leukemia, J. Infect., **1997**, 34, 65–67.
- 15- K. Diongue, M. A. Dialloa, M. C. Secka, M. Ndiayea, A. S. Badianea, A. Diop, Y. D. Ndiaye, O. Ndir and D. Ndiaye, Tinea pedis due to *Cylindrocarpon lichenicola* beginning onycholysis, Med. Mycol. Case Rep., 2016, 11, 13-15.
- 16- H. Champa, P. Sreeshma, P. Y. Prakash and M. Divya, Cutaneous infection with *Cylindrocarpon lichenicola*, Med. Mycol. Case Rep., 2013, 2, 55-58.
- 17- C. Booth, Y. M. Clayto and M. Usherwood, *Cylindrocarpon* species associated with

mycotickeratitis, Proc. Ind. Acad. Sci., **1985**, 2 (3), 433-436.

- 18- K. Mio, F. Takashi, U. Ryuji, N. Kenichi, M. Rokuro and T. Hiroshi, A new ascochlorin derivative from *Cylindrocarpon* sp. FKI-4602, J. Antibiot., **2013**, 66, 23-29.
- 19- B. S. Sheo, G. B. Richard, F. B. Gerald, C. Carmen, B. G. Jackson, A. G. Michael, H. Karst, G. J. Rosalind, M. L. Jerrold, B. L. Russell, C. S. Keith and L. Z. Deborah, Chemistry and Biology of Cylindrols: Novel Inhibitors of Ras Farnesyl-Protein Transferase from *Cylindrocarpon lucidum*, J. Org.Chem., **1996**, 61, 7727-7737.
- 20- W. Daniela, E. Gilda, S. Olov and A. Timm., Cylindrocyclin A, a New Cytotoxic Cyclopeptide from *Cylindrocarpon* sp, J. Antibiot., **2006**, 59 (8), 495-499.
- 21- G. R. Margarita, T. Cristina, R. Jaime, L. Mauricio and S. H. Guillermo. Bioactive Metabolites from the Fungus *Nectria galligena*, the Main Apple Canker Agent in Chile, J. Agric. Food Chem., 2005, 53, 7701-7708.
- 22- G. Evans and N. H. White., Radicicolin and radicicol, two new antibiotics produced by *Cylindrocarpon radicicola*, Trans. Brit. Mycol. Soc., **1966**, 49(4), 563-576
- 23- Y. Liu, Q. Yang, G. Xia, H. Huang, H. Li, L. Ma, Y. Lu, L. He, X. Xia and Z. She, Polyketides with a-glucosidase inhibitory activity from a mangrove endophytic fungus Penicillium sp, J. Nat. Prod., 2015, 78, 1816-1822.
- 24- F. M. Talontsi, B. Dittrich, A. Schüffler, H. Sun and H. Laatsch, Epicoccolides: Antimicrobial and Antifungal Polyketides from an Endophytic Fungus *Epicoccums*p, Associated with Theobroma cacao. Eur.J. Org.Chem., **2013**, 3174–3180.
- 25- T. Ahsan, J. Chen, X. Zhao, M. Irfan and Y. Wu, Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by *Streptomyces* strain KX852460 for the biological control of *Rhizoctonia solani*,

AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Expr., **2017**, 7: 54

- 26- T. M. Ha, W. Ko, S. J. Lee, Y. C. Kim, J. Y. Son, J. H. Sohn, J. H. Yim and H. Oh, Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain *Penicillium* sp. SF-5859in Lipopolysaccharide-Induced RAW264.7 Macrophages, Mar. Drugs., 2017, 15, 282-293.
- 27- J. He, P. Fan, S. Feng, P. Shao and P. Sun, Isolation and Purification of wo Isoflavones from *Hericium erinaceum* Mycelium by High-Speed Counter-Current Chromatography. Molecules, 2018, 23, 560.
- 28- A.M.D.A. Siriwardanea, N. S. Kumar, L. Jayasinghe and Y. Fujimoto., Chemical investigation of metabolites produced by an endophytic *Aspergillus* sp. isolated from *Limonia acidissima*, Natural Product Research, 2015, 29, 1384-87.

Supplementary materials

New polyoxygenated polyketide from pathogenic fungus *Cylindrocarpon destructans* with a-glycosidase inhibitory activity

Dilfaraz Khan^{1,2}, Shah Iram Niaz¹, Kamran Tahir², Muhammad Haroon⁴, Shahid Ullah Khan⁵, Syed Badshah², Shafiullah Khan² and Lui Lan¹

¹School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
 ²Institute of Chemical Sciences, Gomal University Dera Ismail Khan 29050, KPK, Pakistan.
 ³Department of Chemistry, University of Science and Technology, Bannu 28100 KPK, Pakistan.
 ⁴College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, China.
 ⁵College of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan 430070, China.

These authors contributed equally to this work.

*Corresponding authors. Dilfaraz Khan: Email: dilfarazkhan@gu.edu.pk

Figure S1. Key HMBC H-C correlation of compound 1

Figure **S5**. The ¹H-¹H COSEY spectrum of compound **1**

Figure S7. HMBC Spectrum of compound 1 in Acetone-d6

