Spectral characteristics and DFT Study of vanadyl octaethylporphyrin complex


  • Hamza EL Hadki
  • Mohammed Salah
  • Abdallah Zrineh
  • Khadija Marakchi
  • Hassna Abou El Makarim
  • Najia Komiha
  • Oum Keltoum Kabbaj




The chemistry of vanadyl porphyrins has been explored using vanadyl octaethylporphyrin as a substance in petroleum porphyrins, crude oils and bitumen. The structural, electronic, thermodynamic, spectroscopic properties are described. The geometry’s optimization of this molecule was done by Density Functional Theory (DFT) using the hybrid Beck three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional (B3LYP) and 6-31G(d) standard basis set. All calculations have been made in the gas phase and in different solvents: benzene, benzonitrile, tetrachloromethane and chloroform. The calculated infrared spectrum was compared with experimental spectroscopic data, and the vibrational assignment was provided. An electron density analysis in terms of natural bond orbitals was conducted to determine the nature of the bonds between the vanadium and nitrogen atoms. The spatial representation of the associated molecular orbitals helped to explain the formation of the V-N bonds and to interpret the chemical reactivity of the compound studied. The electrostatic potential was calculated in order to investigate the reaction properties of the molecule.


- P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla and D. J. Sutton, Heavy Metals Toxicity and the Environment, EXS, 2012, 101, 133-164.

- B. Zhang, R. Qiu, L. Lu, X. Chen, C. He, J. Lu and Z. J. Ren, Autotrophic Vanadium(V) Bioreduction in Groundwater by Elemental Sulfur and Zerovalent Iron, Environ. Sci. Technol., 2018, 52, 7434-7442.

- F. Abu-Awwad and P. Politzer, Variation of Parameters in Becke-3 Hybrid Exchange-Correlation Functional, Journal of Computational Chemistry, 2000, 21, 227-238.

- C.Lee and C. Sosa, Local density component of the Lee-Yang-Parr correlation energy functional, J. Chem. Phys., 1994, 100, 9018-9024.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,Gaussian 09, Gaussian Inc, Wallingford CT, 2009.

- A. E. Reed, L. A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 1988, 88, 899-926.

- A. M. Köster, M. Leboeuf and D. Salahub, Molecular electrostatic potentials from density functional theory, Theoretical and Computational Chemistry, 1996, 3, 105-142.

- R. Carbó-Dorca and P. Bultinck, Quantum Mechanical Basis for Mulliken Population Analysis, Journal of Mathematical Chemistry, 2004, 36, 231-239.

- O. Tapia and O. Goscinski, Self-consistent Reaction Field Theory of Solvent Effects, Molecular Physics, 1975, 29, 1653-1661.

- V. Barone, M. Cossi and J. Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, 107, 3210-3221.

- R. Dennington, T. Keith and J. Millam, Semichem. Inc., Shawnee Mission, KS,2009.

- M. G. B. Drew, P. C. H. Mitchell and C. E. Scott, Crystal and molecular structure of three oxovanadium (IV) porphyrins: oxovanadium tetraphenylporphyrin(I), oxovanadium (IV) etioporphyrin (II) and the 1:2 adduct of (II) with 1,4-dihydroxybenzene (III). Hydrogen bonding involving the VO group. Relevance to catalytic demetallisation, Inorganica Chimica Acta, 1984, 82, 63-68.

- R. Salcedo, I. P. Zaragoza, J. M. MartıÌnez-Magad¡n and I. GarcıÌa-Cruz, Electronic structure in different environments for vanadyl porphyrinate molecules present in crude oil, Journal of Molecular Structure: THEOCHEM, 2003, 626, 195-201.

- K. Yamashita, S. Tazawa and K. Sugiura, Oxo(porphyrinato)vanadium (IV) as a standard for geoporphyrins, Inorganica Chimica Acta, 2016, 439, 173-177.

- G.V. Girichev, N.I. Giricheva, O.A. Golubchikov, Y.V. Mimenkov, A.S. Semeikind and S.A. Shlykov, Octamethylporphyrin copper, C28H28N4Cu -A first experimental structure determination of porphyrins in gas phase, Journal of Molecular Structure, 2010, 978, 163-169.

- G.V. Girichev, N.I. Giricheva, O.I. Koifman, Y.V. Minenkov, A.E. Pogonin, A.S. Semeikind and S.A. Shlykov, Molecular structure and bonding in octamethylporphyrintin(II), SnN4C28H28, Dalton Trans., 2012, 41, 7550-7558.

- A.Zrineh., K.Bahja.M., Ferhat., J.M. Barbe, R.Guilard ; Metal elements present in black phosphate minerals of Youssoufia (Morocco), characterization of vanadyl and nickel porphyrins [Éléments métalliques présents dans les phosphates noirs sableux de youssoufia (Maroc), caractérisation de porphyrines de vanadyle et de nickel], Analusis, 1995, 23(5), 222-224





Computational Chemistry