Structural, electronic, optical properties and first-principles calculations of Sr1-xCaxWO4 ceramics


  • Mohammed Ait Haddouch Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M’Sik, Casablanca, Morocco
  • Youssef Tamraoui Materials Science and Nano-engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
  • Fatima-Ezzahra Mirinioui Univ. Hassan 1er, laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M),25000, Khouribga, Morocco
  • Youssef Aharbil Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben Mâ'Sik, Casablanca, Morocco.
  • Hicham Labrim Centre National de l'Energie, des Sciences et des Techniques Nucléaires, Rabat, Morocco
  • Bouchaib Manoun Univ. Hassan 1er, laboratoire des Sciences des Matériaux, des Milieux et de la modélisation (LS3M),25000, Khouribga, Morocco
  • Abdelilah Benyoussef Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat, Morocco
  • Said Benmokhtar Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M’Sik, Casablanca, Morocco.



A series of strontium calcium tungstates Sr1-xCaxWO4 powders with (x = 0; 0.25; 0.5; 0.75 and 1.0) were prepared by solid-state reaction method and analyzed by X-ray diffraction (XRD). All these compositions possess a tetragonal scheelite structure with I41/a space group. Raman active vibrational modes in the range from 20 to 1000 cm-1 of the series Sr1-xCaxWO4 with tetragonal structure exhibit 13 modes in arrangement with the Group theory analysis of structural Raman-active modes. The optical properties were investigated using the diffuse reflectance UV–visible absorbance spectrum. Based on Density Functional Theory (DFT) and using full Potential-linearized Augmented Plane Wave (FP-LAPW) method with the Local Density Approximation and the Generalized Gradient Approximation (GGA), implemented in the Wien2k package, we have investigated electronic and optical properties of all the compositions. The results indicate a decrease in the values of the optical direct bandgap (from 4.29 to 3.87 eV) with the increase of Ca into SrWO4 lattice, which is in good agreement with our experimental results.


- D. Rangappa, T. Fujiwara, T. Watanabe, M. Yoshimura, Preparation of Ba1−xSrxWO4 and Ba1−xCaxWO4 films on tungsten plate by mechanically assisted solution reaction at room temperature, Materials Chemistry and Physics. 2008,109,217-223.

- R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius, EPL Europhysics Letters). 2008,83,37002.

- S.D. Colson, K.N. Wong, Overtone spectra of crystalline CaWO4: vibrational exciton density-of-states functions, Chemical Physics. 1982, 69,223-228.

- M. Ait Haddouch, Y. Aharbil, Y. Tamraoui, B. Manoun, P. Lazor, S. Benmokhtar, Synthesis, X-ray diffraction, Raman spectroscopy and Electronic structure studies of (Ba1-xSrx)WO4 ceramics, Journal of Materials and Environmental Science. 2015,6.

- M.V. Nazarov, B.S. Tsukerblat, E.-J. Popovici, D.Y. Jeon, Optical lines in europium–terbium double activated calcium tungstate phosphor, Physics Letters A. 2004,330,291-298.

- Z. Wang, J.J. Bian, Low-temperature sintering and microwave dielectric properties of Ba3(PO4)2-BaWO4 composite ceramics, Ceramics International. 2014,40,8507-8511.

- H. Zhuang, Z. Yue, S. Meng, F. Zhao, L. Li, Low-Temperature Sintering and Microwave Dielectric Properties of Ba3(VO 4)2-BaWO4 Ceramic Composites, Journal of the American Ceramic Society. 2008,91,3738-3741.

- K. V. Terebilenko, K.L. Bychkov, K.E. Klymyshyna, V.N. Baumer, M.S. Slobodyanik, E. V. Khomenko, V.P. Dotsenko, Single Crystals of KRE(MoO4) 2, (RE- Ce, Pr) Obtained from Fluorides: Scheelite-Related Structure and Luminescence, Crystal Research and Technology. 2017,52,1700222.

- R.C. Lima, M. Anicete-Santos, E. Orhan, M.A.M.A. Maurera, A.G. Souza, P.S. Pizani, E.R. Leite, J.A. Varela, E. Longo, Photoluminescent property of mechanically milled BaWO4 powder, Journal of Luminescence. 2007,126,741-746.

- F.M. Pontes, M.A.M.A. Maurera, A.G. Souza, E. Longo, E.R. Leite, R. Magnani, M.A.C. Machado, P.S. Pizani, J.A. Varela, Preparation, structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route, Journal of the European Ceramic Society. 2003,23,3001-3007.

- P. Afanasiev, Molten salt synthesis of barium molybdate and tungstate microcrystals, Materials Letters. 2007,61,4622-4626.

- Q. Guo, O.J. Kleppa, Note on the enthalpies of formation of SrWO4 and BaWO4 determined by high-temperature direct synthesis calorimetry from SrCO3 + WO3 and BaCO3 + WO3, Thermochimica Acta. 1997,303,183-186.

- N. Khobragade, E. Sinha, S.K. Rout, M. Kar, Structural, optical and microwave dielectric properties of Sr1−xCaxWO4 ceramics prepared by the solid-state reaction route, Ceramics International. 2013, 39, 9627-9635.

- C.S. Lim, Solid-state metathetic synthesis of BaMO4 (M = W, Mo) assisted by microwave irradiation, Journal of Ceramic Processing Research. 2011, 12, 544-548.

- Q. Guo, O.J. Kleppa, Enthalpies of formation from the component oxides of MgWO4, CaWO4 (scheelite), SrWO4, and BaWO4, determined by high-temperature direct synthesis calorimetry, Thermochimica Acta. 1996, 288, 53-61.

- S.K. Arora, B. Chudasama, Crystallization and optical properties of CaWO4 and SrWO4, Crystal Research and Technology. 2006, 41, 1089-1095.

- P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review. 1964, 136, B864-B871.

- J. Rodriguez-Carvajal, FULLPROF 2000: A Rietveld Refinement and Pattern Matching Analysis Program, 2008.

- T. Roisnel, J. Rodríquez-Carvajal, WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis, Materials Science Forum. 2001, 378-381, 118-123.

- M. Azdouz, B. Manoun, M. Azrour, L. Bih, L. El Ammari, S. Benmokhtar, P. Lazor, Synthesis, Rietveld refinements and Raman spectroscopy studies of the solid solution Na1−xKxPb4(VO4)3 (0≤x≤1), Journal of Molecular Structure. 2010, 963, 258-266.

- Y. Tamraoui, B. Manoun, F. Mirinioui, I. Saadoune, R. Haloui, A. Elhachmi, E. Saad, P. Lazor, Temperature and composition induced phase transitions in Sr2−xCa1+xTeO6 (0 ≤ x ≤ 2) double perovskite oxides, Journal of Molecular Structure. 2017, 1131.

- R.A. May, K.J. Stevenson, Software Review of Origin 8, Journal of the American Chemical Society. 2009, 131, 872.

- P. Kubelka, F. Munk, An Article on Optics of Paint Layers (engl. Ãœbersetzung), Z. Tech. Phys. 1931, 12, 593-601.

- J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin. 1968, 3, 37-46.

- P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Computer code WIEN2K, Vienna University of Technology. 2001.

- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters. 1996, 77, 3865-3868.

- A. Boultif, D. Loueer, D. Louër, Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method, Journal of Applied Crystallography. 1991, 24, 987-993.

- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A. 1976, 32, 751-767.

- A. Priya, E. Sinha, S.K. Rout, Structural, optical and microwave dielectric properties of Ba1−xSrxWO4 ceramics prepared by solid-state reaction route, Solid State Sciences. 2013, 20, 40-45.

- I.C. Nogueira, L.S. Cavalcante, P.F.S. Pereira, M.M. De Jesus, J.M. Rivas Mercury, N.C. Batista, M.S. Li, E. Longo, Rietveld refinement, morphology and optical properties of (Ba1-xSrx)MoO4 crystals, Journal of Applied Crystallography. 2013, 46, 1434-1446.

- S.K. Ghosh, S.K. Rout, A. Tiwari, P. Yadav, J.C. Sczancoski, M.G.R. Filho, L.S. Cavalcante, Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1−xSrx)MoO4 ceramics, Journal of Materials Science: Materials in Electronics. 2015, 26, 8319-8335.

- M.E. Fleet, Distortion parameters for coordination polyhedra, Mineralogical Magazine. 1976, 40, 531-3.

- K. Momma, F. Izumi, IUCr, VESTA: a three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 2008, 41, 653-658.

- R.F. Gonçalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L. V. Rosa, A.P.A. Marques, Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO4:Eu3+ microcrystals, CrystEngComm. 2015, 17, 1654–1666.

- S.K. Ghosh, M. Ganguly, S.K. Rout, T.P. Sinha, Order-disorder correlation on the local structure and photo-electrical properties of La3+ ion modified BZT ceramics, The European Physical Journal Plus. 2015, 130, 68.

- L.P. Lyashenko, L.G. Shcherbakova, I.I. Tartakovskii, A.A. Maksimov, R.D. Svetogorov, Y. V. Zubavichus, Order-Disorder Structural Transformations in Nanocrystalline Highly Imperfect Gd2MO5 (M = Zr and Hf) Fluorite Derivatives, Inorganic Materials. 2018, 54, 245-252.

- M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga,

A. Kirov, H. Wondratschek, Bilbao Crystallographic Server: I. Databases and crystallographic computing programs, Zeitschrift Für Kristallographie - Crystalline Materials. 2006, 221.

- S.P.S. Porto, J.F. Scott, Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4, Physical Review. 1967, 157, 716-719.

- J. Suda, P.G. Zverev, Investigation of bandgap effect and dephasing on Raman line broadening for the highest-frequency Ag mode in comparison with SrWO4 and SrMoO4, Vibrational Spectroscopy. 2016, 84, 127-132.

- D. Christofilos, S. Ves, G.A. Kourouklis, Pressure-induced phase transitions in alkaline earth tungstates, Physica Status Solidi (B) Basic Research. 1996, 198, 539-544. d.

- B. Coluzzi, A. Biscarini, G. Mazzolai, F.M. Mazzolai, A. Tuissi, Effect of H-Doping on Damping Capacity of Various NiTi-Based Alloys at kHz Frequencies, Journal of Engineering Materials and Technology. 2006, 128, 254.





Physical Chemistry