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Abstract: The one-pot reaction of per-acetylated glycopyranosyl bromides with alcohols in light-protected flask 

leads to the stereoselective synthesis of deacetylated alkyl pyranosides in good yields. 
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1. Introduction 
 

For a long time, the importance of fatty acids and fatty 

acid derivatives was limited to their occurrence in 

mono-, di- and triacylglycerides. The real and greater 

importance of this class of compounds was finally 

given by lipidomics. Lipidomics unveils the 

complexity of the lipidome in metabolic diseases 1-5. 

Since then, fatty acid derivatives have increasingly 

come into the focus of scientific interest, and their 

importance has increased. For example, glycolipids 

not only hold many biological functions, including 

signaling and recognition but also cell adhesion 6-8. 

Recently, it demonstrates that the potential of           

-unsaturated fatty acids as inhibitors of the 

enzymes acetyl- and butyrylcholinesterase 9, and the 

antimicrobial and cytotoxic activity of (thio)alkyl 

hexopyranosides was described 10,11 These glycolipids 

are known to destabilize biological membranes 

resulting most often in antifungal or antibacterial 

properties 12. It was shown that especially tetradecyl 

and hexadecyl -D-glucopyranosides hold good 

antimicrobial activity against some strains of Gram-

positive bacteria. Their cytotoxicity, however, 

increases with an increasing chain length of the 

aglycon 10. The number of reports dealing with the 

antimicrobial activity of alkyl glycosides is rare 13-16. 

Today, the selective synthesis of - or -configured 

glycosides usually does not pose a significant 

challenge, since a variety of methods exist that allow 

stereoselective syntheses in good to excellent yields. 

Unfortunately, these methods have hardly found their 

way into the synthesis of long-chain alkyl glycosides. 

Within the scope of an extensive study on the 

cytotoxicity of this class of compounds, we were 

particularly interested in a rapid stereoselective 

synthesis of -configured glycosides. The method had 

to be scalable holding reasonable short reaction times, 

mild conditions and acceptable yields. 

 

2. Results and discussion 
 

Our investigations began with the synthesis of methyl 

glycosides. Fischer glycosidation, the direct reaction 

of aldoses with boiling methanol in the presence of an 

acid as a catalyst, usually leads to a mixture of the 

corresponding  and  anomers, and the yields are 

moderate to low. The reactions proceed fast, but rather 

time-consuming separations of the anomers cannot be 

avoided 17-20. As an alternative chemo-enzymatic 

glycosidations have been suggested 21-24. These 

reactions proceed very slowly, and they rarely give 

acceptable yields 25. Furthermore, the glycosidases 

responsible for the creation of the glycosidic bond are 

not readily commercially available or have to be 

identified as far as they are yet unknown. 

Methanolyses of 2,3,4,6-tetra-O-acetyl--D-gluco-

pyranosyl bromide in the presence of silver salts (e.g. 

silver(I)triflate) 26 or mercury salts (Königs-Knorr 

conditions) 27 have been widely used 28-33. However, 

the use of silver salts for large scale preparations is 

expensive, and the use of mercury salts raises 

ecological concern. Additionally, the tin chloride 

catalysed reaction of 1,2,3,4,6-penta-O-acetyl-D- 

http://www.medjchem.com/
file:///F:/AASUBMISSIONS/VOLUMES%201/VOLUME%2010%20ISSUE%203/En%20cours/SUBMISSION%20of%20Rene%20Csuk%201278/rene.csuk@chemie.uni-halle.de
http://dx.doi.org/10.13171/mjc02003181278rc


Mediterr.J.Chem., 2020, 10(3)      I. Serbian et al.               270 

 

 

glucopyranose, however, led to -D-glyco-

pyranosides only when 1,2,3,4,6-penta-O-acetyl--D-

glucopyranose was used as a starting material 34.                      

A couple of years ago, the synthesis of methyl                              

-D-glucopyranoside from peracetylated                             

-D-glucopyranosyl bromide was re-investigated by          

H. Weidmann 35. The scale and the yield were good, 

but the reported protocol was restricted to the 

synthesis of methyl -D-glucopyranoside. Due to our 

need in considerable amounts of -configurated alkyl 

glycosides, we became interested in the further 

development of this procedure. 

Our investigations started with the synthesis of methyl 

-D-glucopyranoside (5, Scheme 1) from             

2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide 

(4). This compound can be obtained from D-glucose 

(1) by a two-step synthesis consisting of acetylation 

of D-glucose (leading to an anomeric mixture of the 

corresponding per-acetates 2 and 3) followed by their 

treatment with hydrobromic acid. The reaction of          

4 with dry methanol in a light-protected flask at room 

temperature for four days furnished 85% of pure            

5 being identical with an authentic sample 

(commercial). Only slight drops of yields were 

observed upon scaling up of the reaction (up to the 

amount of ca. 100 g product prepared in a single flask 

reaction). The reaction of a mixture of 2 and 3 with 

methanol at room temperature in the presence of 

BF3
.Et2O gave a mixture of the anomeric methyl 

glycosides in 89% yield. 

The reaction of 4 with ethanol, propanol, butanol, 

hexanol, octanol, decanol, dodecanol, tetradecanol 

and hexadecanol under the same condition (albeit 

with a prolonged reaction time) gave the 

corresponding -configurated glycosides 6-14. The 

transformation of 2 and 3 into 4 as well as the 

conversion of 4 into 5-14 proceeds through an 

intermediate oxonium ion. 

 

 

Scheme 1. Synthesis of -configurated glycosides 5-14. Reactions and conditions: a) Ac2O, pyridine, 3.0 h, 

25°C, quant.; b) HBr in AcOH (33%), CHCl3, 1.0 h, 25°C, quant.; c) ROH, 4-7 d, 25°C, 56-85% 

 

Similarly, from the reaction of D-mannose                   

(15, Scheme 2) -configurated D-mannopyranosyl 

bromide 18 was obtained in quantitative yield whose 

reaction with methanol gave a 62% of methyl                

-D-mannopyranoside (19). While from D-galactose 

(20) finally methyl -D-galactopyranoside (24) was 

obtained in 56% yield, and from lactose (15)              

(via 26 and 27) methyl -D-lactoside (28) was 

accessed in 58% yield. 
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The reactions of the glycosyl bromides with the 

alcohols have to be performed at room temperature, 

and bright daylight must be excluded. Heating of the 

reaction mixtures resulted in the formation of 

mixtures of anomers while standing in bright daylight 

led to the decomposition of the glycosyl bromides. 

 

 
Scheme 2. Synthesis of methyl glycosides 19, 24 and 28 derived from D-mannose (15), D-galactose (20) and 

lactose (25), respectively: reactions and conditions:  a) d) g) Ac2O, pyridine, 3 h, 25 °C, quant.; b) e) h) HBr in 

AcOH (33%), CHCl3, 1 h, 25°C, quant.; c) f) i) MeOH, 4 d, 25°C, 62% (of 19), 56% (of 24), 58% (of 28) 

 

3. Conclusion 
 

The reaction of glycosyl bromides in the presence of 

the corresponding alcohols leads to the respective 

glycosides in good yields. Starting from D-glucose,    

D-galactose and lactose, the -configured glycosides 

are stereoselectively obtained. While the 

corresponding -configured product is obtained from 

D-mannose. The method described here is simple, can 

be easily scaled up for more considerable preparations 

and offers the advantage of not requiring additional 

metal salt or base catalysis. 

 

4. Experimental 
 

Instrumentation as previously 9 reported. The purity of 

the compounds was determined by HPLC           

(Merck-Hitachi LaChrom D-7000 HPLC-DAD/RI 

system, column, Aminex HPX-87P; 300x7.8 mm;     

60°C; H2O; flow 0.5 mL/min) > 98%. 1H and 13C 

NMR data for known compounds were as reported.   

 

1,2,3,4,6-Penta-O-acetyl--D-glucopyranose (2) 

and 1,2,3,4,6-penta-O-acetyl--D-glucopyranose 

(3) 

Acetylation of anhydrous D-glucose                                  

(1, 30.0 g, 166.5 mmol) in dry pyridine (110 mL) with 

Ac2O (109 mL, 1.17 mol) for 5 hours at 25°C 

followed by usual aqueous workup, furnished a 

mixture of 2 and 3 (65.0 g, 100%) being pure enough 

for the next step. One gram of this mixture was 

subjected to chromatography (silica gel, hexane/ethyl 

acetate, 5:3) to afford pure samples. 
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Data for 2: m.p. 109-111°C (lit.: 36 111-112°C); []D 

= + 76.3° (c = 0.6, CHCl3) (lit.: 37 []D = +104°                       

(c = 0.5, CHCl3)). 

Data for 3: m.p. 128-130°C (lit.: 38 131-132°C); []D 

= +4.6° (c = 0.5, CHCl3) (lit.: 39 []D = +3.8° (c = 1.0, 

CHCl3)). 

  

2,3,4,6-Tetra-O-acetyl--D-glucopyranosyl 

bromide (4) 

To an ice-cold solution of 2/3 (65.0 g, 166.5 mmol) in 

dry CHCl3 (200 mL), hydrobromic acid (33% in 

AcOH) was slowly added. After stirring for 20 min, 

the mixture was stirred for another hour at 25°C, 

cooled to 5°C, and water (200 mL) was added. The 

organic layer was washed [water (3 x 100 mL), 

NaHCO3 (satd., 2 x 100 mL)], dried (Na2SO4), and the 

volatiles were removed under diminished pressure. 

Column chromatography (silica gel, hexane/ethyl 

acetate, 5:3) afforded 4 (68.47 g, 100%). The material 

was directly used for the next reactions.                         

Re-crystallization from diisopropyl ether gave an 

analytical sample. Re-crystallized material can be 

stored in the dark over KOH for several months while 

impure material readily becomes brown to black 

under air and light; m.p. 87-89°C (lit.: 40 88-89°C); 

[]D +197.3° (c = 1.8, CHCl3) (lit.: 40 +197°                    

(c = 2, CHCl3)). 
 

Methyl -D-glucopyranoside (5) 

Stirring of a solution of 4 (68.5 g, 166.5 mmol) in dry 

methanol (400 mL) in a light-protected flask          

(black foil) at 25°C for 4 days (for the reaction 

utilizing long-chain alkanols reaction times of up to    

7 days were used for completion of the reaction; TLC 

checked the progress) followed by removal of the 

volatiles under reduced pressure and crystallization 

from methanol/ethanol (1:3) afforded 5 (27.2 g, 85%); 

m.p. 110-111°C (lit.: 41 112-113°C); m.m.p.              

110-111°C; []D = -32.7° (c = 0.4, MeOH)                 

(lit.: 42 []D = -30.3° (c = 2, H2O). Scaling up of the 

reaction (274 g starting material) gave a slight drop of 

yield (76% after work-up by chromatography               

(silica gel, methanol/ethyl acetate 10:90  

methanol/ethyl acetate 20:80) instead of 

crystallization. 
 

Ethyl -D-glucopyranoside (6) 

As described above, 4 (6.85 g, 16.6 mmol) gave             

6 (2.86 g, 83%); m.p. 81-83°C (lit.: 43 82-84°C);      

[]D = -33.0° (c = 0.8, MeOH) (lit.: 43 []D = -28.5°               

(c = 1.0, MeOH)). 
 

Propyl -D-glucopyranoside (7) 

As described above, 4 (6.85 g, 16.6 mmol) gave             

7 (2.95 g, 80%); m.p. 97-100°C (lit.: 44 101-102°C); 

[]D = -37.4° (c = 0.9, MeOH)  (lit.: 45 []D = -44.5° 

(c = 1.16, MeOH)). 
 

Butyl -D-glucopyranoside (8) 

As described above, 4 (6.85 g, 16.6 mmol)gave 8  

(2.98 g, 76%); m.p. 83-85°C (lit.: 46 81-82°C);           

[]D = -35.9° (c = 0.4, MeOH) (lit.: 46 []D = -35.2°   

(c = 1.4, MeOH)). 
 

Hexyl -D-glucopyranoside (9) 

As described above, 4 (6.85 g, 16.6 mmol) gave 8 

(3.11 g, 71%); m.p. 88-90°C (lit.: 47 88-89°C);               

[]D = -33.4° (c = 0.7, MeOH) (lit.: 45 []D = -33.9°        

(c = 0.9, MeOH)). 

 

Octyl -D-glucopyranoside (10) 

As described above, 4 (6.85 g, 16.6 mmol) gave 10 

(3.25 g, 67%); m.p. 73-77°C (lit.: 48 61.5-62.5 °C); 

[]D = -39.8° (c = 0.6, H2O) (lit.: 49 []D = -39.8°           

(c = 0.6, H2O)). 
  

Decyl -D-glucopyranoside (11) 

As described above (in the presence of 100 mL 

dichloromethane), 4 (6.85 g, 16.6 mmol) gave              

11 (3.67 g, 69%); m.p. 130-135°C (lit.: 48 135.6°C); 

[]D = -27.8° (c = 0.6, MeOH) (lit.: 50 []D = -27.8°    

(c = 0.7, MeOH)). 
 

Dodecyl -D-glucopyranoside (12) 

As described above (in the presence of 100 mL 

dichloromethane), 4 (6.85 g, 16.6 mmol) gave             

12 (3.70 g, 64%); m.p. 138-142°C (lit.: 48 144-145°C); 

[]D = -23.1° (c = 0.4, MeOH) (lit.: 50 []D = -24.7°    

(c = 0.5, MeOH)). 
 

Tetradecyl -D-glucopyranoside (13) 

As described above (in the presence of 100 mL 

dichloromethane), 4 (6.85 g, 16.6 mmol) gave              

13 (3.56 g, 57%); m.p. 147-151°C (lit.: 51 151.5°C); 

[]D = -30.4° (c = 0.3, MeOH) (lit.: 52 []D = -32.4°     

(c = 0.6, MeOH)). 
 

Hexadecyl -D-glucopyranoside (14) 

As described above (in the presence of 100 mL 

dichloromethane), 4 (6.85 g, 16.6 mmol) gave              

13 (3.90 g, 58%); m.p. = 138-141°C (lit.: 52 145°C); 

[]D = -19.9° (c = 0.2, CHCl3) (lit.: 53 []D = -16.2°    

(c = 0.5, CHCl3)). 
 

1,2,3,4,6-Penta-O-acetyl--D-mannopyranose (16) 

and 1,2,3,4,6-penta-O-acetyl--D-mannopyranose 

(17) 

As described above, from D-mannose                            

(15, 30.0 g, 166.5 mmol) a mixture of syrupy 16/17                           

(68.5 g, 100%). Chromatography gave analytically 

pure compounds: 

Data for 16: m.p. 74-76°C (lit.: 54 75-76°C);               

[]D = +58.0° (c = 0.75, CHCl3) (lit.: 54 []D +56.8°   

(c = 2.0, CHCl3)). 

Data for 17: m.p. 115-118°C (lit.: 55 117-118°C); []D 

-83.4° (c = 0.32, CHCl3); lit.: 56 []D -85.5°                      

(c = 1.5, CHCl3)). 
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2,3,4,6-Tetra-O-acetyl--D-mannopyranosyl 

bromide (18) 

As described above, 16/17 (65.0 g, 189.9 mmol) gave 

syrupy 18 (68.5 g, 100%). Chromatography yielded 

an analytically pure compound: 

m.p. 69-72°C; []D +52.8° (c = 0.59, CHCl3);  
1H NMR (500 MHz, CDCl3):  = 6.29 (d, 1H, J = 1.6 

Hz, 1-H), 5.71 (dd, 1H, J = 3.4, 10.2 Hz, 3-H), 5.44 

(dd, 1H, J = 1.6, 3.4 Hz, 2-H), 5.37 (dd, 1H, J = 10.1, 

10.2 Hz, 4-H), 4.32 (dd, 1H, J= 4.9, 12.5 Hz, 6-HA), 

4.22 (ddd, 1H, J = 2.2, 4.9, 10.1 Hz, 5-H), 4.14 (dd, 

1H, J = 2.2, 12.5 Hz, 6-HB), 2.17, 2.10, 2.07, 2.00 

(each s, 3H, Me) ppm;  
13C NMR (125 MHz, CDCl3):  = 170.5, 169,6, 169.5, 

169.4 (each CO), 83.0 (C-1), 72.8 (C-5), 72.1 (C-4), 

67.9 (C-3), 65.3 (C-2), 61.4 (C-6), 20.7, 20.6, 20.5, 

20.4 (each Me) ppm;  

MS (ESI, MeOH): m/z (%) = 331.1 ([M-Br]+, 16), 

427.9 ([M(79Br) + NH4]+, 18), 429.9 ([M(81Br) + 

NH4]+ 7, 432.9 ([M(79Br) + Na]+, 99), 434.8 ([M(81Br) 

+ Na]+, 100);  

analysis calcd for C14H19BrO9 (411.20): C 40.89, H 

4.66; found: C 40.63, H 4.85. 
 

Methyl -D-mannopyranoside (19) 

As described above, 18 (68.5 g, 166.5 mmol) gave 19 

(20.1 g, 62%); m.p. 189-191°C (lit.: 57 194°C);          

[]D = +81.0° (c = 0.38, H2O) (lit.: 57 []D = +82.5°   

(c = 1.3, H2O)). 
 

1,2,3,4,6-Penta-O-acetyl--D-galactopyranose (21) 

and 1,2,3,4,6-penta-O-acetyl--D-galactopyranose 

(22) 

As described above, D-galactose (20, 30.0 g, 166.6 

mmol) gave a syrupy mixture of 21/22 (68.5 g, 100%). 

Chromatography yielded analytically pure 

compounds: 

Data for 21: m.p. 92-95°C (lit.: 58 95-96°C);               

[]D +103.7° (c = 0.55, CHCl3) (lit.: 58 []D +106.8° 

(c = 3.01, CHCl3)). 

Data for 22: m.p. 140-143°C (lit: 59 143-144°C);                

[]D +26.0° (c = 0.4, CHCl3) (lit.: 60 []D +27.1° (c = 

1.03, CHCl3)). 
 

2,3,4,6-Tetra-O-acetyl--D-galactoyranosyl 

bromide (23) 

As described above, 21/22 (65.0 g, 189.9 mmol) gave 

syrupy 23 (68.5 g, 100%). Chromatography yielded 

an analytically pure compound: m.p. 84-86°C            

(lit.: 61 84-85°C); []D +209.8° (c = 0.54, CHCl3)    

(lit.: 62 []D = +212° (c = 1, CHCl3)). 
 

Methyl -D-galactopyranoside (24) 

As described above, 23 (68.5 g, 166.5 mmol) gave 24 

(18.1 g, 56%); m.p. 171-173°C (lit.: 63 175-178°C); 

[]D = -13.5° (c = 0.65, MeOH) (lit.: 63 []D = -15.5° 

(c = 1.0 MeOH)). 
 

1,2,3,6,2’,3’,4’,6’-Octa-O-acetyl--lactose (26) 

As described above, lactose (25, 30.0 g, 87.7 mmol) 

gave syrupy 26 (59.5 g, 100%). An analytical sample 

showed: m.p. 135-138°C (lit.: 64 140-143°C);           

[]D = +94.1° (c = 0.73, CHCl3) (lit.: 65 []D = +99° 

(c = 2, CH2Cl2);  
1H NMR (500 MHz, CDCl3):  = 6.25 (d, 1H, J = 3.7 

Hz, 1-H), 5.45 (dd, 1H, J = 9.4, 10.2 Hz, 3-H), 5.35 

(dd, 1H, J = 1.0, 3.4 Hz, 4’-H), 5.12 (dd, 1H, J = 7.9, 

10.4 Hz, 2’-H), 5.00 (dd, 1H, J = 3.7, 10.2 Hz, 2-H), 

4.96 (dd, 1H, J = 3.4, 10.4 Hz, 3’-H), 4.48 (d, 1H, J = 

7.9 Hz, 1’-H), 4.44 (dd, 1H, J = 2.0, 12.2 Hz, 6’-HA), 

4.16-4.06 (m, 3H, 6-HA, 6-HB, 6’-HB), 4.00 (ddd, 1H, 

J = 1.9, 4.1, 10.0 Hz, 5-H), 3.87 (ddd, 1H, J = 2.0, 6.0, 

7.5 Hz, 5’-H), 3.81 (dd, 1H, J = 9.4, 10.0 Hz, 4-H), 

2.17, 2.15, 2.12, 2.06, 2.05, 2.03, 2.00, 1.96 (each s, 3 

H, OAc) ppm;  
13C NMR (125 MHz, CDCl3):  = 170.3, 170.2, 170.1, 

170.0, 169.9, 169.5, 169.1, 168.9 (each CO), 101.2 

(C-1’), 89.0 (C-1), 75.8 (C-4), 71.0 (C-3’), 70.7 (C-

3), 69.6 (C-2), 6.4 (C-2’), 66.6 (C-4’), 61.4 (C-6’), 

60.8 (C-6), 20.9, 20.8, 20.7, 20.6, 20.5 20.4, 20.3, 20.3 

(each CH3);  

MS (ESI, MeOH): m/z (%) = 691.1 ([M+NH4]+, 44), 

701.1 ([M+Na]+, 100), 1378.3 ([M2+Na]+, 26%);  

analysis calcd for C28H38O19 (678.59): C 49.56, H 

5.64; found: C 49.37, H 5.81. 
 

2,3,6,2’,3’,4’6’-Hepta-O-acetyl--lactopyranosyl 

bromide (27) 

As described above, 26 (59.5 g, 87.6 mmol) gave        

27 (61.3 g, 100%). Chromatography yielded an 

analytically pure compound: m.p. 65 138-141°C       

(lit.: 143-144°C); []D = +103.6° (c = 0.53, CHCl3) 

(lit.: 66 110.6° (c = 0.4, CHCl3)). 
 

Methyl -lactoside (28) 

As described above, 27 (61.3 g, 87.6 mmol) gave       

28 (18.1 g, 58%);  

m.p. 203-205°C (lit.: 67 205°C); []D = -13.0°                

(c = 0.5, MeOH) (lit.: 68 []D = +3.6° (c = 1.4, H2O));  
1H NMR (500 MHz, CD3OD):  = 4.35 (d, 1H, J = 7.6 

Hz, 1-H), 4.19 (d, 1 H, J = 7.8 Hz, 1’-C), 3.90 (dd, 1H, 

J = 2.5, 12.1 Hz, 6’-HA), 3.84 (ddm 1H, J = 4.2, 12. 1 

Hz, 6’-HB), 3.80 (dd, J = 0.9, 3.2 Hz, 4’-H), 3.77 (dd, 

1H, J = 7.5, 11.4 Hz, 6-HA), 3.69 (dd, 1H, J = 4.6, 11.4 

Hz, 6-HB), 3.59-3.53 (m, 4H, 2-H, 3H, 4-H, 5-H), 3.52 

(s, 3H, OMe), 3.47 (dd, 1J, J = 3.2, 9.5 Hz, 3’-H), 3.39 

(ddd, 1H, J = 0.9, 2.5, 4.2 Hz, 5’-C), 3.22 (dd, 1H, J = 

7.8, 9.5 Hz, 2’-C) ppm;  
13C NMR (125 MHz, CD3OD):  = 103.8 (C-1’), 

103.7 (C-1), 79.2 (C-5), 75.7 (C-2’), 75.0 (C-2), 74.9 

(C-4), 73.4 (C-3’), 73.3 (C-3), 71.1 (C-5’), 68.9         

(C-4’), 61.0 (C-6’), 60.5 (C-6), 55.9 (OMe) ppm;  

MS (ESI, MeOH): m/z (%) = 357.1 ([M+H]+, 2), 

379.3 ([M+Na]+, 14), 734.9 ([2M+Na]+, 100);  

analysis calcd for C13H24O11 (356.32): C 43.82, H 

6.79; found: C 43.61, H 6.94. 
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