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Abstract: Oxidation of 2,3-dehydro-11-keto--boswellic acid gave derivatives holding extra hydroxyl groups at 

positions C-1, C-2 or C-1 and C-9, respectively. The synthesis of 2,3-dehydro-1,9-dihydroxy-11-keto--boswellic 

acid represents the first partial-synthetic access to this class of compounds. The synthetic strategy can be expanded 

easily, and a corresponding analogue derived from glycyrrhetinic acid was accessed by the same synthetic scheme 

in good overall yield. Boswellic and glycyrrhetinic acid 1,9-endoperoxides are intermediates for the synthesis of 

the 1,9-dihydroxylated compounds. These 1,9-endo-peroxides were highly cytotoxic for several human tumor cell 

lines but only diminished cytotoxicity was observed in SRB assays for the 1,9-dihydroxylated compounds. 
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Introduction 

 

Frankincense and its extracts have been in use for 

many centuries1–5. The first indications of the use of 

incense can be found in 3500 years old texts from the 

Nile Valley6. Thereby, the Egyptians used incense for 

the good smell of the air, for ointments but also for 

wound treatment. Frankincense was a valuable 

commodity, and as a result of its trade routes soon 

developed. Thus, three thousand years ago there were 

already fixed trade routes, the incense routes, which 

brought the precious resin from its homeland South 

Arabia (above all Oman) and the island of Sokotra at 

the horn of Africa to Egypt and Mesopotamia. Incense 

is the air-dried gum resin obtained from the incense 

tree. The resin is mainly obtained from trees of the 

genus Boswellia sacra, Boswellia papyrifera, 

Boswellia serrata, Boswellia frereana, each of which 

produces a slightly different type of resin. Through 

cuts in the trunk and branches, a sticky-milky liquid 

emerges, which causes the incense resin to form by 

drying in the air. Frankincense was and is not           

only used as a cult incense but also as a 

phytotherapeutic7–10. In modern medicine; 

preparations from frankincense with standardized 

active substance content are investigated in the 

therapy of chronic inflammatory diseases such as 

Crohn's disease 11,12, ulcerative colitis or poly-arthritis 
7,11. First clinical study results suggest the 

effectiveness of frankincense preparations in Crohn's 

disease 1 and ulcerative colitis13–16. 

Frankincense consists of a mixture of different 

compounds whereby -boswellic acids are considered 

to be the most important ingredients. In particular,          

3-O-acetyl-11-keto-β-boswellic acid (AKBA, 1, 

Figure 1) and 11-keto-β-boswellic acid (KBA, 2) hold 

anti-inflammatory effects by inhibiting the enzyme 5-

lipoxygenase and thus reducing the biosynthesis of 

leukotrienes 17–19. 

 

Figure 1. Structure of AKBA (1) and KBA (2); a) 

isolation from frankincense according to Jauch et al. 
36; b) NaOMe, MeOH, 12 h, 25 °C, 98%. 

 

Boswellic acids and their derivatives 20–32 show 

cytotoxic effects and have been investigated for the 
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treatment of tumors 9,10. Frankincense holds many 

terpenoids, and several hydroxylated boswellic acids 

 have also been found in incense as minor components 
33,34. However, they have rarely been isolated in pure 

form, and therefore hardly any research has been 

carried out on their physicochemical and biological 

properties 35. Therefore, we studied the synthesis of 

some -boswellic acids with additional hydroxyl 

groups at positions C-1, C-2 and C-9, and screened 

them for cytotoxic effects. 
 

Results and discussion 
  

AKBA (1, Figure 1) can easily be obtained from 

the resin by extraction, oxidation and acetylation 

following Jauch’s procedure 36,37. Deacetylation of 1 

with NaOMe in MeOH gave 2. Mitsunobu 

elimination 38 of 2 (Scheme 1) with triphenyl-

phosphane (TPP), diethyl azodicarboxylate (DEAD) 

and 3,3-dimethyl-glutarimide (DMGI) yielded 3 39-41 

in excellent yield. Compound 3 is a well-suited 

starting material for the synthesis of hydroxylated 

AKBA derivatives.  

While the reaction of 3 with catalytic amounts of 

OsO4 in the presence of a five-fold molar excess of           

N-methylmorpholine N-oxide in THF/water (5/1) 

resulted in a very low yield of di-hydroxylated 4, the 

reaction of 3 with equimolar amounts of OsO4 

proceeded smoothly at 5 °C and 76% of 4 could be 

isolated. The configuration at position C-2 and C-3 

was deduced from the coupling constants 3JH-2,H-3 and 

2D-1H-1H-NOESY-NMR experiments.   

Riley-oxidation of 3 with SeO2 in 1,4-dioxane at 

70 °C for one day gave a 56% yield of 5 holding an 

additional hydroxyl group at position C-1. The 

absolute configuration of the newly created 

stereogenic center C-1 in compound 5 42 was again 

deduced from 2D-1H-1H-NOESY spectra. Oxidation 

of 3 with N-hydroxy-phthalimide (NHPI) and sodium 

dichromate in the presence of oxygen21,43, however, 

proceeded very sluggish, and only traces of a peroxo-

compound 6 were detected by TLC-MS. Therefore, 

compound 2 was esterified (Cs2CO3/MeI) and ester 7 

was obtained. An elimination reaction as described 

above gave 8. The oxidation of 8 with oxygen, 

Na2Cr2O7. 2 H2O in the presence of NHPI gave 76% 

of peroxo compound 9. Reduction of 9 with thiourea 

at 40 °C for one day furnished 68% of 10 holding 

hydroxyl moieties at positions C-1 and C-9. This 

strategy for the synthesis of triterpenes with additional 

hydroxyl groups at positions C-1 and C-9 seems to be 

generally feasible. For comparison, glycyrrhetinic 

acid (11, Scheme 2) was transformed into its methyl 

ester 12 44,45 followed by an elimination reaction to 

afford 13. Oxidation of 13 as described above gave 

endo-peroxide 14 44 whose reduction with           

thiourea 46,47 finally yielded 1,9-dihydroxylated 15. 

There are only a few reports describing the isolation 

of 1,3,9-trihydroxylated triterpenoic acids 48–51; there 

is none, however, dealing with their (partial) 

synthesis.  
 

Compounds 1-5 and 7-15 were screened for their 

cytotoxic activity in SRB assays 20,22,52. Most of the 

compounds showed only weak to medium activity. 

Interestingly, while endo-peroxides 9 and 14 are 

highly cytotoxic for several human tumor cell lines, 

only diminished cytotoxicity was observed for 10 and 

15 in SRB assays (Table 1); the cytotoxicity of 

compounds 10 and 15 is – by and large - in the same 

magnitude as of parent AKBA (1) and glycyrrhetinic 

acid (12), respectively. The highest cytotoxicity was 

observed for 9 albeit its selectivity malignant cells vs. 

non-malignant mouse fibroblast was low. Higher 

selectivity was observed, however, for 11. Thus, this 

compound was most cytotoxic for A375 melanoma 

cells (EC50 = 6.3 M) while being significantly less 

cytotoxic for non-malignant mouse fibroblasts NIH 

3T3 (EC50 = 22.8 M). 

 

Table 1. Cytotoxicity of compounds 1-15 and betulinic acid (BA, positive standard; EC50 values in µM from SRB 

assays after 96 h of treatment, the values are averaged from three independent experiments performed each in 

triplicate, confidence interval CI = 95%; mean ± standard mean error). Human cancer cell lines: A375 (epithelial 

melanoma), A2780 (ovarian carcinoma), HT29 (colorectal adenocarcinoma), MCF7 (breast adenocarcinoma), 

518A2 (melanoma); non-malignant: NIH3T3 (mouse fibroblasts). 

Compound A375 A2780 HT29 MCF7 518A2 NIH3T3 

1 24.1 ± 3.7 21.1 ± 1.9 19.4 ± 1.1 17.4 ± 1.7 20.5 ± 1.1 > 50 

2 47.9 ± 2.4 37.9 ± 3.6 71.3 ± 2.8 35.8 ± 3.2 48.5 ± 1.3  > 50 

3 41.3 ± 1.7 39.5 ± 2.6 38.1 ± 1.9 41.3 ± 1.7 40.1 ± 2.3 42.3 ± 2.4 

4 39.2 ± 1.4 40.2 ± 2.0 39.4 ± 1.7 37.4 ± 3.5 39.1 ± 1.9 40.0 ± 2.3 

5 38.7 ± 3.0 37.4 ± 2.3 40.3 ± 2.4 41.0 ± 2.6 39.2 ± 1.4 39.5 ± 2.5 

7 51.4 ± 2.8 37.9 ± 3.6 71.3 ± 2.8 35.8 ± 3.2 48.5 ± 1.3 41.9 ± 6.3 

8 40.9 ± 2.8 40.1 ± 2.5 30.2 ± 3.2 30.9 ± 1.7 35.2 ± 1.9 29.4 ± 3.0 

9 0.9 ± 0.2 0.7 ± 0.1 1.3 ± 0.6 1.8 ± 0.9 0.8 ± 0.2 1.4 ± 0.4 

10 25.9 ± 2.5 17.1 ± 0.8 26.7 ± 1.9 12.5 ± 0.7 26.3 ± 4.7 29.9 ± 2.4 

11 6.3 ± 1.4 25.5 ± 1.3 27.5 ± 1.4 22.1 ± 1.2 27.5 ± 1.4 22.8 ± 1.1 

12 83.2 ± 2.9 74.6 ± 3.7 80.1 ± 4.0 84.7 ± 4.2 75.1 ± 3.2 18.5 ± 0.9 

13 45.3 ± 2.0 47.3 ± 1.9 40.2 ± 2.3 41.4 ± 1.7 39.6 ± 2.9 40.8 ± 3.0 

14 1.5 ± 0.5 1.01 ± 0.3 1.7 ± 0.4 2.9 ± 0.4 1.2 ± 0.4 1.9 ± 0.3 

15 27.0 ± 2.2 23.8 ± 0.7 26.5 ± 1.3 14.3 ± 0.6 25.6 ± 3.7 30.9 ± 1.3 

BA 17.1 ± 1.7 11.0 ± 1.9 14.4 ± 2.3 14.8 ± 1.9 16.3 ± 2.5 13.1 ± 1.1 
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Scheme 1. Synthesis of boswellic acid derivatives 3-10: a) TPP, DMGI, DEAD, THF, 24 h, 40 °C, 81%; b) 

OsO4, pyridine, 3 days, 5 °C, 76%; c) SeO2, dioxane, 1 day, 70 °C, 56%; d) Cs2CO3, THF, MeI, 12 h, 25 °C, 

95%; e) TPP, DMGI, DEAD, THF, 24 h, 40 °C, 85%; f) NHPI, Na2Cr2O7
.2 H2O, O2, 12 h, 40 °C, 76%; g)                 

H2N-(C=S)-NH2, MeOH, 1 day, 40 °C, 68%. 

 

 

 
 

Scheme 2. a) TPP, DMGI, DEAD, THF, 1 day, 40 °C, 82%; b) NHPI, Na2Cr2O7.2H2O, O2, 12 h, 40 °C, 76%; c) 

H2N-(C=S)-NH2, MeOH, 1 day, 40 °C, 70%. 
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Conclusion 

 

Starting from 11-keto--boswellic acid several 

derivatives were prepared holding extra hydroxyl 

groups at positions C-1, C-2 or C-1 and C-9, 

respectively. For the latter compound, this represents 

the first partial-synthetic access to this class of 

compounds. The synthetic strategy seems to be 

universal, and a corresponding analogue derived from 

glycyrrhetinic acid was accessed by the same 

synthetic scheme in good overall yield. Central 

intermediates for these 1,9-dihydroxylated-2,3-eno 

compounds are 1,9-endoperoxides. While these 1,9-

endo-peroxides were highly cytotoxic for several 

human tumor cell lines, only diminished cytotoxicity 

was observed for the 1,9-dihydroxylated compounds 

in SRB assays. 

 

Experimental  

 

Melting points are uncorrected (Leica hot stage 

microscope), NMR spectra were recorded using the 

Varian spectrometers Gemini 2000 or Unity 500 (δ 

given in ppm, J in Hz), MS spectra were taken on a 

Finnigan MAT LCQ 7000 (electrospray, voltage 4.5 

kV, sheath gas nitrogen) instrument. The optical 

rotations were measured on a Perkin-Elmer 

polarimeter at 20 °C; TLC was performed on silica gel 

(Merck 5554); elemental analyses were performed on 

a Vario EL (CHNS). The solvents were dried 

according to usual procedures. The purity of the 

compounds was determined by HPLC and found to be 

> 97%. Frankincense was bought from different 

commercial suppliers in bulk quantities. The SRB 

assays were performed as previously reported.  
 

3-O-Acetyl-11-keto--boswellic acid [AKBA (1)] 

AKBA was isolated following a modified Jauch’s 

procedure 36 and obtained as a white solid; m.p. 268-

270 °C (lit.: 36 271-276 °C), []D = +81.1° (c = 1.0, 

CHCl3) (lit.: 36 []D = +82° (c = 1.25, CHCl3)).  

 

11-Keto--boswellic acid (2, KBA) 

Deacetylation of AKBA (1, 10.0 g, 19.5 mmol) in 

methanol (200 mL) with an aq. solution of sodium 

hydroxide (4 M, 100 mL) at 25 °C for 12 h followed 

by usual work-up and chromatography (silica gel, n-

hexane/ethyl acetate, 98:2) gave 2 (9.3 g, 98%) as a 

white solid; m.p. 192-195 °C (lit.: 36 194-195 °C);   

[]D = +118.2° (c = 3.72, CHCl3), lit.: 36) []D = +121° 

(c = 1.11, CHCl3)). 

 

2,3-Dehydro-11-keto--boswellic acid (3) 

To a solution of 2 (3.42 g, 7.26 mmol) in dry THF (80 

mL), PPh3 (9.54 g, 36.3 mmol) and 3,3-

dimethylglutarimide (5.13 g, 36.4 mmol) were added, 

and stirring at 25 °C was continued for 10 min. A 

solution of DEAD in toluene (14.2 mL, 36.3 mmol, 

40%) was slowly added. Stirring at 40 °C was 

continued for one day. The solvent was removed 

under diminished pressure, and the residue subjected 

to chromatography (n-hexane/ethyl acetate, 15:1) to 

yield 8 (2.66 g, 81%) as a white solid; m.p. 279-282 

°C; []D = +238.1° (c = 0.9, CHCl3); 
1H NMR (500 MHz, CDCl3):  = 5.65 (m, 2H, 2-H, 3-

H), 5.60 (bs, 1H, 12-H), 3.13 (dd, J = 18.3, 5.1 Hz, 

1H, 1-Ha), 2.42 (s, 1H, 9-H), 2.08 (m, 1H, 16-Ha), 1.90 

(m, 2H, 6-Ha, 15-Ha), 1.85-1.62 (m, 3H, 1-Hb, 6-Hb, 

7-Ha), 1.55 (m, 1H, 18-H), 1.50-1.40 (m, 4H, 7-Ha, 

19-Ha, 21-Ha, 22-Ha), 1.37 (bs, 4H, 21-Hb, 23-H), 1.32 

(m, 1H, 22-Hb), 1.31 (bs, 4H, 5-H, 27-H), 1.22 (m, 1H, 

15-Hb), 1.20 (s, 3H, 26-H), 1.14 (s, 3H, 25H), 1.03 (m, 

1H, 16-Hb), 0.93 (bs, 4H, 20-H, 30-H), 0.81 (s, 3H, 

28-H), 0.82 (d, J = 6.4 Hz, 3H, 29-H) ppm; 
13C NMR (125 MHz, CDCl3):  = 199.5 (C-11), 182.0 

(C-24), 165.0 (C-13), 130.4 (C-12), 129.8 (C-3), 

125.4 (C-2), 60.2 (C-9), 58.9 (C-18), 52.8 (C-5), 45.0 

(C-8), 44.1 (C-4), 43.3 (C-14), 42.0 (C-1), 41.2 (C-

22), 39.2 (C-19), 39.1 (C-20), 36.0 (C-10), 34.3 (C-

17), 32.4 (C-7), 31.3 (C-21), 28.6 (C-28), 27.9 (C-23), 

27.4 (C-16), 27.0 (C-15), 21.0 (C-30), 20.4 (C-27), 

19.6 (C-6), 17.5 (C-26), 17.4 (C-29), 14.9 (C-25) 

ppm;  

MS (ESI, MeOH): m/z (%): 453.2 (72, [M+H]+);  

Analysis calcd for C30H44O3 (452.67): C 79.60, H 

9.80; found: C 79.42, H 10.01. 
 

2-Hydroxy-11-keto--boswellic acid (4) 

A solution of OsO4 (300 mg, 1.18 mmol) in THF (30 

ml) was added to a solution of 3 (450 mg, 1.0 mmol) 

in THF containing pyridine (0.5 mL), and the mixture 

was stirred at 5 °C for three days. The supernatant was 

decanted, the residue dissolved in DCM (150 mL) and 

treated with an aq. solution of NaHSO3 (100 mL). The 

organic phase was dried (Na2SO4), the solvent 

evaporated, and the residue subjected to 

chromatography (silica gel, n-hexane/ether/acetic 

acid, 1:5/1%) to yield 4 (370 mg, 76%) as a white 

solid; m.p. 220-223 °C; []D = +114.3° (c = 1.1, 

acetone);  
1H NMR (500 MHz, acetone):  = 5.51 (s, 1H, 12-H), 

4.21 (ddd, J = 12.0, 4.8, 2.9 Hz, 1H, 2-H), 3.94 (d, J 

= 2.5 Hz, 1H, 3-H), 2.67 (dd, J = 12.4, 4.5 Hz, 1H, 1-

Ha), 2.50 (s, 1H, 9-H), 2.20 (dt, J = 13.6, 5.0 Hz, 1H, 

16-Ha), 1.98-1.84 (m, 2H, 6-Ha, 15-Ha), 1.81-1.68 (m, 

2H, 6-Hb, 7-Ha), 1.61 (dd, J = 11.2, 1.5 Hz, 1H, 18-

H), 1.56-1.41 (m, 5H, 5-H, 7-Hb, 19-H, 21-Ha, 22-Ha), 

1.40 (s, 3H, 27-H), 1.37 (m, 2H, 21-Hb, 22-Hb), 1.37 

(s, 3H, 23-H), 1.30-1.22 (m, 2H, 1-H, 15-H), 1.18 (s, 

3H, 26-H), 1.17 (s, 3H, 25-H), 1.04 (m, 1H, 16-Hb), 

0.97 (bs, 4H, 20-H, 30-H), 0.84 (s, 3H, 28-H), 0.82 (d, 

J = 6.3 Hz, 3H, 29-H) ppm;  
13C NMR (125 MHz, acetone):  = 200.3 (C-11), 

179.0 (C-24), 165.6 (C-13), 132.1 (C-12), 75.6 (C-3), 

66.5 (C-2), 62.1 (C-9), 61.2 (C-18), 49.2 (C-4), 49.1 

(C-5), 46.5 (C-8), 45.5 (C-14), 44.6 (C-1), 42.6 (C-

22), 40.8 (C-19), 40.7 (C-20), 39.7 (C-10), 35.4 (C-

17), 34.5 (C-7), 32.3 (C-21), 30.0 (C-28), 29.1 (C-16), 

29.0 (C-15), 25.5 (C-23), 22.3 (C-30), 22.0 (C-27), 

20.6 (C-6), 20.1 (C-26), 18.6 (C-29), 16.0 (C-25) 

ppm;  

MS (ESI, MeOH): m/z (%): 487.3 (100, [M+H]+);  

Analysis calcd for C30H46O5 (486.68): C 74.04, H 

9.53; found: C 73.83, H 9.71.  
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1-Hydroxy-2,3-dehydro-11-keto--boswellic acid 

(5) 

To a solution of 3 (0.9 g, 1.99 mmol) in dry 1,4-

dioxane (25 mL) SeO2 (510 mg, 4.6 mmol) was added 

and the mixture was heated at 70 °C for one day. The 

mixture was filtered, and the filtrate was evaporated 

under reduced pressure. The residue was dissolved in 

ether (100 mL), followed by usual aqueous work up 

and chromatography (silica gel, n-hexane/ether/acetic 

acid, 2:1/0.1%) gave 5 (0.52g, 56%) as an off-white 

solid; m.p. 283-286 °C; []D = +276.1° (c = 1.3, 

CHCl3);  
1H NMR (500 MHz, CDCl3):  = 5.87 (dd, J = 10.1, 

5.2 Hz, 1H, 2-H), 5.79 (d, J = 10.1 Hz, 1H, 3-H), 5.64 

(s, 1H, 12-H), 4.65 (d, J = 5.2 Hz, 1H, 1-H), 3.35 (s, 

1H, 9-H), 2.14 (dt, J = 13.5, 4.6 Hz, 1H, 16-Ha), 1.95-

1.81 (m, 2H, 6-Ha, 15-Ha), 1.87-1.70 (m, 1H, 6-Ha), 

1.71-1.51 (m, 4H, 5-H, 7-Ha, 18-H, 22-Ha), 1.50-1.35 

(m, 3H, 7-Ha, 19-H, 21-Ha), 1.34 (s, 3H, 23-H), 1.32 

(m, 1H, 21-Hb), 1.30 (bs, 4H, 22-Hb, 27-H), 1.26 (m, 

1H, 15-Hb), 1.20 (s, 3H, 26-H), 1.08 (s, 3H, 25-H), 

1.04 (m, 1H, 16-Hb), 0.93 (bs, 4H, 20-H, 30-H), 0.82 

(s, 3H, 28-H), 0.81 (d, J = 6.4 Hz, 3H, 29-H) ppm;  
13C NMR (125 MHz, CDCl3):  = 201.5 (C-11), 180.9 

(C-24), 166.0 (C-13), 133.6 (C-3), 130.0 (C-12), 

126.4 (C-2), 69.2 (C-1), 59.4 (C-18), 51.4 (C-9), 46.7 

(C-5), 44.8 (C-8), 43.8 (C-4), 44.0 (C-14), 41.1 (C-

22), 40.7 (C-10), 39.1 (C-19), 38.9 (C-20), 34.2 (C-

17), 31.1 (C-7), 31.0 (C-21), 28.4 (C-28), 27.7 (C-23), 

27.5 (C-16), 27.4 (C-15), 21.4 (C-30), 20.1 (C-27), 

19.2 (C-6), 18.0 (C-26), 17.3 (C-29), 15.3 (C-25) 

ppm;  

MS (ESI, MeOH): m/z (%): 469.5 (100, [M+H]+);  

Analysis calcd for C30H44O4 (468.67): C 76.88, H 

9.46; found: C 76.57, H 9.61. 
 

11-Keto--boswellic acid methyl ester (7) 

A suspension of 2 (4.73 g, 10.0 mmol) and Cs2CO3 

(9.8 g, 30 mmol) in THF (50 mL) was stirred at 0 °C 

for 30 min, then MeI (6.23 mL, 100 mmol) was added, 

and stirring was continued for 12 h. Usual work-up 

gave 7 (4.60 g, 95%) as an off-white solid that was 

used for the next reaction without any purification; an 

analytical sample showed m.p. 223-225 °C (lit.: 220-

225 °C 21; []D = +109.8° (c = 1.3, CHCl3) (lit.: []D 

= +111.2° (c = 4.34, CHCl3) 21.  
 

2,3-Dehydro-11-keto--boswellic acid methyl ester 

(8) 

To a solution of 7 (3.52 g, 7.26 mmol) in dry THF (80 

mL), PPh3 (9.54 g, 36.3 mmol) and 3,3-

dimethylglutarimide (5.13 g, 36.4 mmol) were added, 

and stirring at 25 °C was continued for 10 min. A 

solution of DEAD in toluene (14.2 mL, 36.3 mmol, 

40%) was slowly added. Stirring at 40 °C was 

continued for 1 day. The solvent was removed under 

diminished pressure, and the residue subjected to 

chromatography (n-hexane/ethyl acetate, 15:1) to 

yield 8 (2.9 g, 85%) as a white solid; m.p. 187-190 °C 

(lit.: 185-188 °C 21); []D = +194.4° (c = 0.31, CHCl3) 

(lit.: []D = +187.4° (c = 5.32, CHCl3) 21. 
 

Methyl 2,3-dihydro-1,9-peroxo-11-oxo-urs-12-

en-24-oate (9) 

To a solution of 8 (2.94 g, 6.3 mmol in acetone (150 

mL), NHPI (5.13 g, 10.5 mmol) and Na2Cr2O7.2H2O 

(0.39 g, 1.26 mmol) were added, and the suspension 

was stirred over night at 40 °C. Usual work-up 

followed by chromatography (silica gel, n-

hexane/ethyl acetate, 10:1) gave 9 (2.23 g, 76%) as a 

white solid; m.p. 148-151 °C (lit.: 21 amorphous 

solid); []D = 68.3° (c = 4.1, CHCl3) (lit.: []D = 65.6° 

(c = 4.98, CHCl3)21; MS (ESI, MeOH): m/z (%) = 

1015.1 (100, [2M+ Na]+), 764.3 (25, [3M+Ca]2+), 

519.3 (54, [M+Na]+), 497.2 (14, [M+H]+). 

 

Methyl 2,3-dihydro-1,9-dihydroxy-11-oxo-urs-

12-en-24-oate (10) 

To a solution of 9 (1.68 g, 3.4 mmol) in MeOH (150 

mL) thiourea (0.5 g, 6.8 mmol) was added, and the 

mixture was stirred at 40 °C for 1 day. Usual work-up 

followed by chromatography (silica gel, n-

hexane/chloroform/ethyl acetate/acetic acid, 

8:5:2:0.2%) gave 10 (1.15 g, 68%) as a white solid; 

m.p. 228-231 °C; []D = +158.5° (c = 0.32, CHCl3);  
1H NMR (400 MHz, CDCl3):  = 5.74-5.72 (m, 2H, 3-

H, 2-H), 5.64 (s, 1H, 12-H), 4.96 (m, 1H, 1-H), 3.63 

(s, 3H, OMe), 2.30 (dd, J = 12.6, 3.1 Hz, 1H, 5-H), 

2.22 (ddd, J=  13.3, 13.3, 3.8 Hz, 1H, 7-Ha), 2.16 

(ddd, J=  13.5, 13.5, 4.8 Hz, 1H, 16-Ha) 2.01-1.89 (m, 

2H, 6-Ha, 15-Ha), 1.68 (ddd, J=  13.5, 13.5, 3.6 Hz, 

1H, 6-Hb), 1.56 (dd, J = 11.5, 1.3 Hz, 1H, 18-H), 1.52-

1.41 (m, 3H, 22-Ha, 19-H, 21-Ha), 1.47 (s, 3H, 27-H), 

1.37 (s, 3H, 23-H), 1.36-1.19 (m, 4H, 22-Hb, 21-Hb, 

15-Hb, 7-Hb), 1.18 (s, 3H, 26-H), 1.04 (s, 3H, 25-H), 

0.97 (m, 1H, 16-Hb), 0.94-0.90 (m, 1H, 20-H), 0.93 (s, 

3 H, 30-H), 0.84 (s, 3H, 28-H), 0.82 (d, J=  6.4 Hz, 

3H, 29-H) ppm; 
13C NMR (100 MHz, CDCl3):  = 201.0 (C-11), 175.6 

(C-24), 168.1 (C-13), 133.5 (C-3), 128.0 (C-12), 

126.1 (C-2), 83.5 (C-9), 74.0 (C-l), 60.4 (C-18), 51.7 

(OMe), 47.6 (C-4), 46.0 (C-14), 44.9 (C-8), 43.8 (C-

10), 42.1 (C-5), 41.0 (C-22), 39.5 (C-19), 39.3 (C-20), 

34.6 (C-17), 31.0 (C-21), 29.4 (C-15), 29.3 (C-28), 

27.7 (C-23), 27.5 (C-16), 27.3 (C-7), 25.3 (C-27), 

21.0 (C-30), 20.6 (C-6), 20.5 (C-25), 19.1 (C-26), 

17.5 (C-29) ppm;  

MS (ESI, MeOH): m/z (%) = 1019.3 (100, [2M+Na]+, 

521.4 (16, [M+Na]+), 481.2 (8, [M+H-H2O]+);  

Analysis calcd for C31H46O5 (498.70): C 74.66, 

H9.30; found: 74.42, H 9.47. 
 

Glycyrrhetinic acid (11) 

This material was commercially obtained in bulk from 

Orgentis GmbH (Neugatersleben, Germany) and used 

as received. 
 

Glycyrrhetinic acid methyl ester (12) 

This compound was prepared as previously described 

from 12 (30.0 g, 65.9 mmol), iodomethane (4.94 mL, 

79.0 mmol) and potassium carbonate (15.34 g, 111.0 

mmol) in dry DMF (150 mL), and obtained as a white 

solid (29.1 g, 91%); m.p. 255-258 °C (lit.: 254-258 °C 
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45); []D = +140.9° (c = 2.5, CHCl3) (lit.: []D = + 

141.2 (c = 4.8, CHCl3)) 45. 
 

2,3-Dehydro-glycyrrhetinic acid methyl ester (13) 

To a solution 12 (1.52 g, 3.14 mmol) in THF (80 mL), 

TPP (4.11 g, 15.7 mmol) and DMGI (2.21 g, 15.7 

mmol) were added, and the mixture was stirred for 10 

min. A solution of DEAD (14.2 mL, 36.3 mmol, 40% 

in toluene) was slowly added, and the mixture has 

stirred at 40 °C for one day. Usual work-up followed 

by chromatography (silica gel, n-hexane/ethyl acetate, 

15:1) gave 13 (1.2 g, 82%) as a white solid; m.p. 225-

228 °C (lit.: 182-186 °C) 44; []D = +211.4° (c = 0.30, 

CHCl3) (lit.: []D = +204.6° (c = 3.42, CHCl3))44; MS 

(ESI, MeOH): m/z (%) = 955.4 (30, [2M+Na]+), 933.3 

(100, [2M+H]+), 467.3 (79, [M+H]+).  

Methyl 2,3-dihydro-1,9-peroxo-11-oxo-olean-

12-en-30-oate (14) 

Following the procedure given for the synthesis of 9, 

from 13 (2.0 g, 4.4 mmol), NHPI (3.72 g, 21.6 mmol) 

and Na2Cr2O7
.2 H2O (300 mg, 0.86 mmol) followed 

by chromatography (silica gel, n-hexane/ethyl acetate, 

10:1) 14 (1.44 g, 76%) was obtained as a white solid; 

m.p. 152-155 °C (lit.: 151-155 °C) 44; []D = +56.9° 

(c = 0.31, CHCl3) (lit.: []D = +48.1° (c = 3.08, 

CHCl3) 44; MS (ESI, MeOH): m/z (%) = 529.0 (24, 

[M+H+MeOH]+), 497.2 (100, [M+H]+). 
 

Methyl 2,3-dihydro-1,9-dihydroxy-11-oxo-

olean-12-en-30-oate (15) 

Following the procedure given for the synthesis of 10, 

from 14 (1.25 g, 3.24 mmol) and thiourea (0.52 g, 6.48 

mmol) followed by chromatography (silica gel, n-

hexane/chloroform/ethyl acetate/acetic acid, 

8:5:2:0.2%) gave 15 (1.17 g, 70%) as a white solid; 

m.p. 210-213 °C; []D = +185.4° (c = 0.34, CHCl3);  
1H NMR (500 MHz, CDCl3):  = 5.16 (s, 1H, 12-H), 

5.60 (dd, J = 10.0, 5.0 Hz, 1H, 2-H), 5.55 (d, J=  10.0 

Hz, 1H, 3-H), 5.02 (d, J = 5.0 Hz, 1H, 1-H), 3.68 (s, 

3H, OMe), 2.26-2.17 (m, 2H, 5-H, 7-Ha), 2.11 (m, 1H, 

16-Ha), 2.09 (dd, J = 13.2, 4.4 Hz, 1H, 18-H), 2.03-

1.95 (m, 2H, 19-Ha, 21-Ha), 1.88 (ddd, J=  13.3, 13.3, 

4.7 Hz, 1H, 15-Ha), 1.74-1.54 (m, 3H, 19-Hb, 6-H), 

1.53 (s, 3H, 27-H), 1.41-1.29 (m, 3H, 22-H, 21-Hb), 

1.26-1.20 (m, 2H, 15-Hb, 7-Hb), 1.19 (s, 3H, 26-H), 

1.14 (s, 3H, 29-H), 1.10 (s, 3H, 25-H), 1.04 (s, 3H, 23-

H), 0.97 (m, 1H, 16-Hb), 0.91 (s, 3H, 24-H), 0.83 (s, 

3H, 28-H) ppm;  
13C NMR (125 MHz, CDCl3):  = 200.9 (C-11), 177.1 

(C-30), 171.2 (C-13), 140.8 (C-3), 126.5 (C-12), 

123.3 (C-2), 83.9 (C-9), 73.9 (C-1), 51.7 (OMe), 49.6 

(C-18), 47.9 (C-8), 45.5 (C-14), 44.0 (C-20), 43.9 (C-

10), 41.0 (C-19), 39.2 (C-5), 37.9 (C-22), 34.6 (C-4), 

32.4 (C-l7), 31.7 (C-23), 31.3 (C-21), 28.9 (C-28), 

28.8 (C-15), 28.4 (C-27), 28.3 (C-29), 26.9 (C-7), 

26.5 (C-l6), 23.0 (C-24), 21.4 (C-25), 19.8 (C-6),           

19.7 (C-26) ppm;  

MS (ESI, MeOH): m/z (%) = 1019.5 (13, [2M+Na]+), 

997.1 (100, [2M+H]+, 499.1 (30, [M+H]+);  

Analysis calcd for C31H46O5 (498.70): C 74.66, H 

9.30; found: 76.41, H 9.51. 
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