

Mediterranean Journal of Chemistry 2019, 9(1), 78-84

Experimental study of the adsorption of Zn²⁺ ions on Natural Calcium Carbonate

Karima Abellaoui ^{*}, Hassan El Kafssaoui, Hakima Nassali, Mohammed S. Elyoubi, Otheman Amrhar, Farouk Bouhrara and Youness Essaadaoui

Laboratory of the Engineering of Materials and Environment, IbnTofail University, B.P:133, 14000 Kenitra, Morocco

Abstract: From an aqueous solution, Zn^{2+} was adsorbed in batches on natural calcium carbonate (NCC) characterized by X-ray diffraction in aqueous solution. The effects of temperature, initial concentration of the solution, contact time, pH of the solution, stirring rate and adsorbent masses were studied as experimental parameters. Knowing that the adequate equilibrium time for the adsorption of Zn^{2+} on natural calcium carbonate was 80 minutes, it is noted that this adsorption is favoured by a basic pH and an average agitation rate. The experimental data were analyzed by the linear form of Langmuir and Freundlich. The results show a good correlation with the isothermal model of Langmuir.

The adsorption kinetics studied by the first-order and second-order kinetic equation, it found to follow the pseudo-second-order equation.

Keywords: Adsorption, Natural calcium carbonate, Zinc, Wastewater treatment, isotherm adsorption.

1. Introduction

Wastewaters generated from many industries such as metal plating, mining, tanneries, painting, car radiator manufacturing, may contain various toxic heavy metals. Heavy metals are not biodegradable and tend to accumulate in living organisms, causing various diseases and disorders ¹. The removal of heavy metals from wastewaters is an essential task for environmental protection. Various treatment techniques have been developed and used to treat heavy metal wastewater. These technologies include chemical precipitation, ion-exchange, membrane filtration, coagulation/flocculation, flotation and electrochemical methods². Adsorption technique is one of the most effective processes of advanced wastewater treatment. It is superior to other techniques in terms of flexibility and simplicity of design, initial cost, insensitivity to toxic pollutants and ease of operation ³⁻⁶. Many adsorbents are widely used such as activated carbon ⁷, chitosan $^{8-12}$, clay $^{13-16}$ and calcium carbonate $^{17-19}$. The use of clay materials over commercially available adsorbents is becoming popular due to its low-cost, abundant availability, variety of structural and surface properties, high chemical stability, high specific surface area and high adsorption capacity¹⁹.

 Zn^{2+} is the most common heavy metals in these wastewaters. It being in the list of priority pollutants

**Corresponding author: Karima Abellaoui Email address: <u>abellaoui.karima@gmail.com</u>* DOI: <u>http://dx.doi.org/10.13171/mjc91190902300ka</u> proposed by Environmental Protection Agency (EPA) gives rise to severe poisoning cases 21 . Zn²⁺ can cause eminent health problems, such as stomach cramps, skin irritations, vomiting, nausea and anaemia 2 .

In this study, Natural Calcium Carbonate (NCC) was used for removing Zinc (II) from aqueous solutions. The effects of several physicochemical parameters such as adsorbent amount, stirring speed, initial concentration of adsorbate, initial pH, and contact time, on adsorption efficiency were investigated, and the optimum values were determined from the experimental studies. The obtained equilibrium isotherm was analyzed using adsorption isotherm models. The kinetic models were applied in order to analyze the kinetics data and to determine the characteristic adsorption constants.

2. Material and Methods 2.1. Adsorbent

The adsorbent used in this study was provided by a local company of manufacture of ceramic materials. It was sieved through a sieve to obtain lower fractions ($<56\mu$ m) and then dried in an oven at 110°C during 2 hours for the next manipulation.

The mineralogical phases constituting the adsorbent were determined using XPERT-PRO diffractometer. The significant peaks that observed on the XRD

> Received July 7, 2019 Accepted August 6, 2019 Published September 2, 2019

diagram of the sample indicate that this adsorbent is composed of four phases (Figure 1): The Muscovite phase (12.9%), the vermiculite phase (0.4%), the quartz phase (28.5%), and the calcite phase, the percentage of which is (58.2%).

Figure 1. The XRD pattern of NCC.

The chemical composition of NCC obtained by using FRX analysis, given in Table 1, indicates the presence of silica and calcite as significant constituents, a percentage of Al_2O_3 which is low whose value equals 6.37% which confirms the low percentage of muscovite along with traces of sodium, phosphor, manganese, sulfur, and titan oxides.

Table 1. The Chemical compositions of NCC.

Chemical Composition	of NCC (%)
S_iO_2	45.40
Al ₂ O ₃	6.37
Fe2O 3	3.04
CaO	20.87
MgO	1.48
K_2O	1.21
Na ₂ O	0.23
P_2O_5	0.24
M_nO	0.01
SO 3	0.028
T_iO_2	0.56
PAF	20, 37

2.2. Adsorbate

The 1000 mg / 1 zinc stock solution was prepared by dissolving 4.398 g of hydrated zinc sulphate

(ZnSO₄ .7H $_2\text{O})$ with a molar mass of 287.39 g / mol in 1 liter

of distilled water. The zinc solutions are prepared by successive dilutions of the stock solution until obtaining the desired concentration.

2.2. Process

The adsorption experiments were carried out using the batch technique. In each experiment, 300 mg of NCC were added to 20 ml solution Zn^{2+} of desired concentration at various PH and agitation speed. After filtration, the residual concentration was determined using a spectrophotometer. The amount of adsorbed de Zn^{2+} at equilibrium, Qe (mg/g) calculated by the following expression (eq.1)⁴:

$$Q_e = \frac{C_0 - C_e}{w} * V \tag{1}$$

The adsorption efficiency of zinc fixed by the NCC is calculated from (Eq. 2) 4 :

$$\underline{\mathbf{R}}_{0}^{m} = \frac{c_0 - c_e}{c_0} * \mathbf{100}$$

Where C_0 and Ce (mg/L) are the initial and equilibrium concentration of Zn^{2+} solution, V(L) is the volume of Zn^{2+} solution, and W (g) is the weight of Natural Calcium Carbonate (NCC).

3. Results and discussion 3.1. Effect of adsorbent amount

The removal of Zn^{2+} ions by NCC examined at different amounts of adsorbent (10, 40, 60, 80, 100, 200, 300, 400 mg /20 ml), A stirring speed of 600 rpm and with a contact time of 3 hours.

According to the results of (Figure 2), it can be seen that the adsorption efficiency of the Zn^{2+} ions increases progressively as the mass of the support

contacted with the metal solution increases and as a result, the contact surface becomes larger. Moreover, the availability of the active sites responsible for the metal ions complexation increases. Optimum efficiency is obtained at a mass of 0.3 g. Consequently, it can conclude that under the used operating conditions, a mass of 0.3 g of the support is sufficient to purify a metallic solution of Zn^{2+} with a concentration equal to 50 ppm ¹⁵.

Figure 4. Effect of the initial concentration on Zn²⁺ adsorption on the studied absorbent

[Zn(II)] (mg/L)

3.2. Effect of stirring speed

The stirring speed is an essential factor that can influence the adsorption of a metal cation on an adsorbent. The effect of stirring speed evaluated by varying the speed of agitation (100, 200, 300, 400, 500, 600, 700 and 800 rpm) at an initial Zn^{2+} concentration of 50 mg/L and contact time of 3 hours. As shown in (Figure 3), the sorption of Zn^{2+} on NCC with increasing the stirring speeds. It can be explained by the fact that increasing the stirring speed increases the turbulence of the mixture, i.e. all the particles of the adsorbent are suspended, and consequently, the diffusion of Zn^{2+} ions towards the surface of the

particles becomes essential, so an increase in the quantity of adsorbed ions will be observed 20 .

3.3. Effect of Initial Concentration

The initial concentration of the metal has an important influence on the retention capacity of the adsorbent. In order to study its effect, the tests were carried out by stirring 0.3 g of the adsorbent for 3 hours in Zn²⁺ solutions whose concentration varies from 5 to 500 mg/L; these tests were carried out at normal pH (of the solution) under the agitation of 600 rpm at room temperature. As shown in (Figure 4), the adsorption capacity of the Natural Calcium Carbonate increases with increasing the initial concentration of

Zn $^{2+}$. This may be because the initial concentration of heavy metal provides an important driving force to overcome the mass transfer resistance of heavy metal ions between the two phases, aqueous and solid, and therefore, a higher initial concentration of the metal will improve the adsorption capacity 21 .

A plateau is observed above a concentration of 300 mg/L. This is probably due to the saturation of the active adsorption sites of the adsorbent, i.e. when the adsorption of Zn^{2+} at an active site takes place, no adsorption will be possible on the same site ¹⁵.

3.4. Effect of initial pH

pH is an important factor controlling the adsorption of a metal cation on an adsorbent. In this study, the effect of this parameter was studied for adsorption of Zn ²⁺ on NCC at ambient temperature, with 300mg/L as initial Zn²⁺ concentration. The range of solution pH was adjusted between 2 and 6, with NaOH or HCl solution (0,1N). As shown in (Figure 5), the capacity

Figure 5. The Effect of solution pH on the Zn²⁺ adsorption onto NCC

3.5. Effect of contact time

Adsorption is a process for transferring the adsorbate from a liquid phase to a solid phase. This transfer is controlled by time, hence the need to study its effect and then determine its kinetics. For this purpose, a series of beakers, fixed masses of the adsorbent (0.3 g) were placed in contact with 20 ml of a Zn^{2+} solution with a concentration of 300 mg / L. The mixture is stirred at a speed of 600 rpm.

The filtrates obtained by filtration of each of the suspensions are analysed to plot the curve Qt = f(t) (Figure 6), Then the experimental data obtained are processed by applying the kinetic models of pseudo-first-order and pseudo-second-order. The most representative model of the data is chosen based on the correlation coefficient R².

From the figure shown above, the equilibrium is reached practically after 80 minutes with a retention capacity Qe = 16.19 mg /g. The obtained results showed that the uptake of Zn2+ as a function of time was noted to occur two steps. In the first step, the of adsorption Zn $^{2+}$ by our material depends on the pH. It increases from 6.12 to 16.21 mg / g when the pH increases from 2 to 6. This can be explained by considering the surface charge of the adsorbent.

When the pH is low, the amount of H⁺ in the solution is high, which leads to competition between these cations and the Zn ²⁺ cations, the surface of the Calcium Carbonate particles protonizes (by H⁺) and thus becomes positively charged, therefore, the formation of bonds between active sites and metal ions is difficult because of the repulsive forces between them. As the pH increases, the surface of the Calcium Carbonate particles is deprotonated, the electrostatic attraction between the negative charge of the surface and the positive charge of Zn²⁺ leads to an increase in the amount of adsorbed Zn²⁺ cation ^{22–23}. For pH values greater than 6, precipitation of Zn²⁺ ions observed as (Zn) OH₂; Which forced us to work on a pH interval between 2 and 6 ¹⁵.

Figure 6. Effect of stirring time on adsorption of Zn^{2+} on the studied adsorbent

adsorption is very fast at the beginning of the contact between the adsorbate and the adsorbent, and this is due to the availability of the negatively charged surface of adsorbent which led to fast electrostatic adsorption of the Zn^{2+} ions from the solution. Followed by a slow step in which the fixation of Zn2+ions become slower and slower as the adsorption sites are filled ²⁴.

Two isotherm models were used to describe the kinetics of adsorption, namely the kinetic models of the pseudo-first-order and second order.

According to the kinetic model of the pseudo-firstorder, the kinetics of adsorption can be expressed by the following equation 8 (eq.3):

$$\ln(\mathbf{Q}\mathbf{e} - \mathbf{Q}\mathbf{t}) = \ln(\mathbf{Q}\mathbf{e}) - K\mathbf{1}\mathbf{t}$$
(3)

The kinetic model of the pseudo-second-order is described by the following equation 8 (eq.4) :

$$\frac{\mathrm{t}}{\mathrm{Qt}} = \frac{\mathrm{t}}{\mathrm{Qe}} + 1/(k2\mathrm{Qe}^2) \tag{4}$$

	Model of the pseudo-first-order kinetics			Model of the pseudo-second-order kinetics		
Q _{e,exp} (mg/g)	K ₁ (min ⁻¹)	Q _{e,cal} (mg /g)	R ²	K ₂ (g/mg .min)	Q _{e,cal} (mg /g)	R ²
16.19	0.0224	14.78	0.966	0.0053	17.36	0.998
1.0- 0.5- 0.5- 1.0- 1.5- 2.0- 2.5-	y= -0. R ² = 0	.0224 +1.169).9664 a	• tqt	14 R ² =	0.998	

Table 2 Vinctic peremeters for the adsorption of $7n^{2+}$ on the studied material

The coefficient of determination coefficient R² of the pseudo-second-order kinetic model is closer to 1 (> 0.99), compared to that of the kinetic model of pseudo-first-order. It can say that the kinetics adsorption of Zn²⁺ by the calcium carbonate is described by the pseudo-second-order model.

60 80 100 120 140 160 180

t(min)

The use of the adsorption isotherm makes it possible to determine the maximum adsorption capacity of a pollutant by material and to identify the type of adsorption. It can be done by applying mathematical models. In our study, two linear models are applied: The Langmuir model and Freundlich model. The Langmuir eq(5) and Freundlich eq(6) equations are presented in Table 2²⁵.

t(min)

3.6. Adsorption isotherms

Isotherm	Linear form	Plot	
Langmuir	$\frac{Ce}{Qe} = \frac{Ce}{Qmax} + \frac{1}{KL * Qmax} $ (5)	$\frac{Ce}{Qe} = f(Ce)$	
Freundlich	ln Qe = ln Kf + (1/n)Ln Ce (6)	LnQe=f(Ce)	

Table 2. The linear form of adsorption isotherm models used in this study.

Where Q_e (mg/g) and C_e (mg/L) are amounts adsorbed at equilibrium (mg/g) and equilibrium liquid phase concentration (mg/L), respectively, Q_m (mg/g) is the maximum adsorbable amount (mg/g) of adsorbed Zn²⁺ per a unit weight of adsorbent, KL is the Langmuir equilibrium constant (L.mg⁻¹), K_f $(1.g^{-1}), 1/n$ is the of Freundlich constancy heterogeneity factor which is limited between 0 and 1.

The variation of the adsorbed amount of Zn^{2+} by the

unit of mass as a function of the Zn²⁺ concentration at equilibrium defines the adsorption isotherm. The form of the isotherm is a means of examining the nature of the adsorption. Gils ²⁷ proposes four forms of isotherm H, C, L, S. According to this classification, Figure 8 shows that the adsorption isotherm of Zn^{2+} by our material is H-type, Indicating the existence of high affinity between the Calcium Carbonate particles used and the Zn^{2+} ion.

Figure 8. The isothermal adsorption of Zn²⁺ on NCC

Linear representations of the experimental values of this adsorption process allowed us to determine the equilibrium parameters and the values of the Langmuir and Freundlich constants calculated by linear regression (Figure 9, Table 3).

Table 3. The Isotherm parameters for Zn^{2+} adsorption onto NCC.

Freundlich		Langmuir		
Kf (L/mg)	1,82	Q _{max} (mg/g)	17.82	
1/ n	0,3518	$K_L (L/mg)$	0, 377	
R ²	0.9559	R ²	0,999	

Figure 9 The adsorption isotherm of Zn²⁺ on the material studied according to a) Model de Langmuir b) Model de Freundlich

As can be seen from Table 3, the Langmuir model has a higher correlation coefficient R^2 than that obtained for the Freundlich model. Therefore, the Langmuir model is the appropriate model to represent the experimental adsorption data of Zn^2 ⁺ by our adsorbent. These results make it possible to conclude that the Zn^{2+} adsorption on the material studied is monolayer adsorption with an estimated adsorption capacity of 17.82 mg / g. The value 1/n indicates the favourable adsorption. Indeed, when the value of 1/n is limited between 0 and 1, adsorption is considered favourable ²⁰. In our case, the value of 1/n equals 0.3418 which indicates that the adsorption of Zn^{2+} by our adsorbent is favourable.

4. Conclusion

This work focused on studying the possibility of zinc removal by adsorption on natural calcium carbonate (NCC). The tests were carried out in synthetic solutions of distilled water.

From the overall results obtained, it concluded that the best adsorption efficiency was achieved at pH = 5.5 and 0.3 g NCC. The adsorption equilibrium is reached in 80 minutes. The adsorption capacity increased with the increase in the initial concentration and reached 17.82 mg/g. Kinetic measurements showed that the process follows the pseudo-secondorder model and isothermal adsorption showed that the Langmuir model is the best model to describe the adsorption process.

References

- T. G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S. Y. Thomas Choong. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. *Desalination*, 2005, 175 (3), 305-316.
- 2- F. Fu, Q. Wang. Removal of heavy metal ions from wastewaters: A review. *Journal of Environmental Management*, **2011**, 92(3), 407-418.
- 3- M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang. Dye and its removal from aqueous solution by adsorption: A review. *Advances in Colloid and Interface Science*, **2014**, 209, 172-184.
- 4- Y. Essaadaoui, A. Lebkiri, E. H. Rifi, L. Kadiri, A. Ouass, Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterr.J.Chem., 2018, 7(2), 145–155.
- 5- A. Ouass, Lamya Kadiri, Y. Essaadaoui, R. A. Belakhmima, M. Cherkaoui, A. Lebkiri, E.H. Rifi, Removal of trivalent chromium ions from aqueous solutions by Sodium polyacrylate beads. Mediterr.J.Chem., 2018, 7(2), 125–134.
- 6- L. Kadiri, A. Lebkiri, E. H. Rifi, A. Ouass, Y. Essaadaoui, I. Lebkiri. Mathematical modeling and thermodynamic study of copper (II) removal from aqueous solution by Coriandrum Sativum seeds. Mediterr.J.Chem., 2019,7(6), 478–490,
- 7- R. Leyva Ramos. Adsorption of zinc(II) from an aqueous solution onto activated carbon. *Journal* of Hazardous Materials, 2002, 90(1), 27-38.
- 8- P. Ding, K. L. Huang, G. Y. Li, Y. F. Liu, W. W. Zeng. Kinetics of adsorption of Zn(II) ion on chitosan derivatives. International *Journal of Biological Macromolecules*, **2006**, 39(4-5), 222-227.
- 9- S. S. Salih, T. K. Ghosh. Preparation and characterization of bioadsorbent beads for chromium and zinc ions adsorption. *Cogent Environmental Science*, 2017, 3(1), 1401577.
- 10-S. S. Salih, T. K. Ghosh. Highly efficient competitive removal of Pb (II) and Ni (II) by chitosan/diatomaceous earth composite. *Journal* of environmental chemical engineering, **2018**, 6(1), 435–443.
- 11-S. S. Salih, T. K. Ghosh. Preparation and Characterization of Chitosan-Coated Diatomaceous Earth for Hexavalent Chromium Removal. *Environmental Processes*, **2018**, 5(1), 23–39.
- 12-S. S. Salih, T. K. Ghosh. Adsorption of Zn (II) ions by chitosan coated diatomaceous earth. *International journal of biological* macromolecules, **2018**, 106, 602–610.
- 13-D. Bouazza, H. Miloudi, M. Adjdir, A. Tayeb, A. Boos. Competitive adsorption of Cu (II) and Zn (II) on impregnating raw Algerian bentonite and

efficiency of extraction. *Applied Clay Science*, **2018**, 151, 118-123.

- 14-T. B. Musso, M. E. Parolo, G. Pettinari, F. M. Francisca. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. *Journal of Environmental Management*, 2014, 146, 50-58.
- 15-S. Veli, B. Alyüz. Adsorption of copper and zinc from aqueous solutions by using natural clay. *Journal of Hazardous Materials*, 2007, 149(1), 226-233.
- 16-C. O. Ijagbemi, M. H. Baek, D. S. Kim. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. *Journal of Hazardous Materials*, 2009, 166(1), 538-546.
- 17-K.-S. Hong, H.M. Lee, J. S.Bae, M. G. Ha, J. S. Jin, T.E. Hong, J. P.Kim, E. D. JeongRemoval of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase. *Journal of Analytical Science and Technology*, **2011**, 2(2), 75-82.
- 18-K. Ahmad, I. A Bhatti, M. Muneer, M. Iqbal, Z. Iqbal. Removal of heavy metals (Zn, Cr, Pb, Cd, Cu and Fe) in aqueous media by calcium carbonate as an adsorbent. *International Journal* of Chemical and Biochemical Sciences, **2012**, 2, 48-53.
- 19-R. Zhang, J. J. Richardson, A. F. Masters, G. Yun, K. Liang, T. Maschmeyer. Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles, *Water, Air, & Soil Pollution*, 2018, 229(4).
- 20-O. Amrhar, H. Nassali, M. S. Elyoubi. Adsorption of a cationic dye, Methylene Blue, onto Moroccan Illicit Clay. J. Mater. Environ. Sci., 2015, 6 (11),3054-3065.
- 21-Y. Huang, S. Li, H. Lin, J. Chen. Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H3PO4 activation for Pb (II) removal. *Applied Surface Science*, **2014**, 317, 422–431.
- 22-A. Assabbane, F. Sakr, A. Sennaoui, M. Elouardi, M. Tamimi. Étude de l'adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus (Adsorption study of Methylene Blue on biomaterial using cactus). J. Mater. Environ. Sci., 2015, 6(2), 397-406.
- 23-Y. Essaadaoui, A. Lebkiri, E. Rifi, L. Kadiri, A. Ouass, Adsorption of lead by modified Eucalyptus camaldulensis bark : equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, **2018**, 111, 267-277.
- 24-H. J. Dutton, J. A. Cannon. Glyceride structure of vegetable oils by countercurrent distribution.
 I. Linseed oil. *Journal of the American Oil Chemists Society*, **1956**, 33(1), 46-49.
- 25-C. H. Giles, D. Smith, A. Huitson. General treatment and classification of the solute adsorption isotherm. I. Theoretical. *Journal of Colloid and Interface Science*, **1974**, 47(3), 755-765.