Electropolymerization of aniline monomer and effects of synthesis conditions on the characteristics of synthesized polyaniline thin films


  • Sanaa El Aggadi Faculty of Sciences, Mohammed V University of Rabat
  • Nidae Loudiyi Faculty of Sciences, Mohammed V University of Rabat
  • Aicha Chadil Faculty of Sciences, Mohammed V University of Rabat
  • Zoubida El Abbassi
  • Abderrahim El Hourch Faculty of Sciences, Mohammed V University of Rabat




Electrochemical polymerization of aniline was carried on platinum (Pt) wire electrode in sulfuric acid (H2SO4) solution by cyclic voltammetry using a conventional three-electrode cell at room temperature (20°C). The effects on the electrodeposition of the monomer concentration, anodic potential and potential scan rate are discussed. The conductive layer of emeraldine base polyaniline (Pani) was prepared in this work by repeating potential cycling between -0.24 and 0.9 V/SCE at 50 mV/s in 1 M H2SO4 solution containing 0.1 M aniline monomer.


- J. Kim, J. Lee, J. You, M.S. Park, M.S. Al Hossain, Y. Yamauchi, J.H. Kim, Conductive polymers for next-generation energy storage systems: Recent progress and new functions, Mater. Horizons., 2016, 3, 517–535.

- A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D’Arcy, Conducting Polymers for Pseudocapacitive Energy Storage, Chem. Mater., 2016, 28, 5989-5998.

- Y. Liu, A.P.F. Turner, M. Zhao, W.C. Mak, Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing, Biosens. Bioelectron., 2018, 100, 374-381.

- R.K. Pal, S. Pradhan, L. Narayanan, V.K. Yadavalli, Micropatterned conductive polymer biosensors on flexible PDMS films, Sensors Actuators, B Chem., 2018, 259, 498-504.

- Y.-T. Dong, J.-X. Feng, G.-R. Li, Transition Metal Ion-Induced High Electrocatalytic Performance of Conducting Polymer for Oxygen and Hydrogen Evolution Reactions, Macromol. Chem. Phys., 2017, 218, 1700359.

- M. Salado, S. Kazim, S. Ahmad, Conductive Polymer Based Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells, Count. Electrodes Dye. Perovskite Sol. Cells, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018, 177-196. https://doi.org/10.1002/9783527813636.ch8.

- P.C. Maity, Polyaniline: Synthesis and Natural Nanocomposites, Doctoral dissertation, Indian Institute of Technology Hyderabad, 2016.

- M.A. Smirnov, E.V. Tarasova, V.K. Vorobiov, I.A. Kasatkin, V. Mikli, M.P. Sokolova, N. V. Bobrova, V. Vassiljeva, A. Krumme, A.V. Yakimanskiy, Electroconductive fibrous mat prepared by electrospinning of polyacrylamide-g-polyaniline copolymers as electrode material for supercapacitors, J. Mater. Sci., 2019, 54, 4859-4873.

- S. Chen, B. Liu, X. Zhang, F. Chen, H. Shi, C. Hu, J. Chen, Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor, Electrochim. Acta., 2019, 300, 373-379.

- P.T. Bertuoli, A.F. Baldissera, A.J. Zattera, C.A. Ferreira, C. Alemán, E. Armelin, Polyaniline coated core-shell polyacrylates: Control of film formation and coating application for corrosion protection, Prog. Org. Coatings., 2019, 128, 40-51.

- A. Merz, M. Uebel, M. Rohwerder, The protection zone: A long-range corrosion protection mechanism around conducting polymer particles in composite coatings: Part I. polyaniline and polypyrrole, J. Electrochem. Soc., 2019, 166, C304-C313.

- A. Rochliadi, S.A. Akbar, V. Suendo, Polyaniline/Zn as a secondary battery for electric vehicle base on energy return factor, Proc. Jt. Int. Conf. Electr. Veh. Technol. Ind. Mech. Electr. Chem. Eng., 2015, 353-358.

- J. Li, L. Liu, D. Zhang, D. Yang, J. Guo, J. Wei, Fabrication of polyaniline/silver nanoparticles/multi-walled carbon nanotubes composites for flexible microelectronic circuits, Synth. Met., 2014, 192, 15-22.

- S. Ranjbar, M.A.F. Nejad, C. Parolo, S. Shahrokhian, A. Merkoçi, Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline, Anal. Chem., 2019, 91, 14960–14966.

- Y. Zhao, S. Zhang, F. Hu, J. Li, H. Chen, J. Lin, B. Yan, Y. Gu, S. Chen, Electrochromic polyaniline/aramid nanofiber composites with enhanced cycling stability and film-forming property, J. Mater. Sci. Mater. Electron., 2019, 30, 12718-12728.

- S. Zhang, S. Chen, F. Yang, F. Hu, B. Yan, Y. Gu, H. Jiang, Y. Cao, M. Xiang, High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods, Org. Electron., 2019, 65, 341-348.

- A.L. Winck, J.C.V. Dos Santos, D.M. Lenz, D.M. Tedesco, Development and characterization of gas sensors using thin films of polyaniline as an active layer, Rev. Mater, 2018, 23. http://dx.doi.org/10.1590/s1517-707620180004.0593.

- L.O. Mandú, A. Batagin-Neto, Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations, J. Mol. Model., 2018, 24, 157.

- S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Hybrid polyaniline-WO3 flexible sensor: A room temperature competence towards NH3 gas, Sensors Actuators, B Chem., 2019, 288, 279-288.

- N. Hui, F. Chai, P. Lin, Z. Song, X. Sun, Y. Li, S. Niu, X. Luo, Electrodeposited Conducting Polyaniline Nanowire Arrays Aligned on Carbon Nanotubes Network for High-Performance Supercapacitors and Sensors, Electrochim. Acta., 2016, 199, 234-241.

- S. Gutić, M. Cacan, F. Korać, Electrodeposition of polyaniline films on stainless steel and their voltammetric behavior in corrosive environments, Bull Chem Technol Bosn Herz., 2017, 48, 45-50.

- Y. Kaykha, M. Rafizadeh, Template synthesis of fibrillar polyaniline complex using a degradable polyelectrolyte, Mater. Chem. Phys, 2019, 229, 98-105.

- L.S. Rego, J.L.S. Antonio, C.H.B. Silva, M.M. Nobrega, M.L.A. Temperini, R.M. Torresi, S.I. Córdoba de Torresi, Electrochemical template synthesis of adherent polyaniline thin films with tubular structure, J. Solid State Electrochem., 2016, 20, 983-991.

- B. Gao, H. Zhou, J. Yang, Hierarchically porous carbons derived from polyaniline by “nanotube seeding” for high-performance ionic liquid-based supercapacitors, J. Mater. Chem. A., 2017, 5, 524–528.

- F.F. Fang, Y.Z. Dong, H.J. Choi, Effect of oxidants on the morphology of interfacial polymerized polyaniline nanofibers and their electrorheological response, Polymer, 2018, 158, 176–182.

- Y. Li, Y. Yi, W. Yang, X. Liu, Y. Li, W. Wang, Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media, J. Electron. Mater., 2017, 46, 1324–1330.

- F. Akrami, L. Marinelli, R. West, Electropolymerization of Polyaniline in the Presence of Ferricyanide, Creat. Act. Res. Day - CARD., 2019.

- S. Schneider, M. Füser, M. Bolte, A. Terfort, Self-assembled monolayers of aromatic pyrrole derivatives: Electropolymerization and electrocopolymerization with pyrrole, Electrochim. Acta., 2017, 246, 853–863.

- R. Mažeikiená, G. Niaura, A. Malinauskas, In situ time-resolved Raman spectroelectrochemical study of aniline polymerization at platinum and gold electrodes, Chemija., 2018, 29, 81-88.

- A. Palma-Cando, I. Rendón-Enríquez, M. Tausch, U. Scherf, Thin Functional Polymer Films by Electropolymerization, Nanomaterials, 2019, 9, 1125.

- E.I. Iwuoha, S.E. Mavundla, V.S. Somerset, L.F. Petrik, M.J. Klink, M. Sekota, P. Bakers, Electrochemical and Spectroscopic Properties of Fly Ash–Polyaniline Matrix Nanorod Composites, Microchim. Acta., 2006, 155, 453-458.

- R.M.G. Rajapakse, L.P.P. Lankeshwara, M.A. Careem, Factors affecting the electropolymerization of aniline from aqueous solutions, Institute of Electrical and Electronics Engineers, 2005, 256-256.

- N. Pekmez, K. Pekmez, M. Arca, A. Yildiz, The effect of monomer and acid concentrations on electrochemical polyaniline formation in acetonitrile, J. Electroanal. Chem., 1993, 353, 237-246.

- H.J.N.P.D. Mello, M. Mulato, Effect of aniline monomer concentration on PANI electropolymerization process and its influence for applications in chemical sensors, Synth. Met., 2018, 239, 66-70.

- M.H. Pournaghi-Azar, B. Habibi, Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes. Comparative characterization of the polyaniline deposited electrodes, Electrochim. Acta., 2007, 52, 4222-4230.

- M. Babaiee, M. Pakshir, B. Hashemi, Effects of potentiodynamic electropolymerization parameters on electrochemical properties and morphology of fabricated PANI nanofiber/graphite electrode, Synth. Met., 2015, 199, 110-120.

- E. De Robertis, R.S. Neves, A.J. Motheo, Electropolymerization studies of PAni/(poly)luminol over platinum electrodes, Mol. Cryst. Liq. Cryst., 2008, 484, 322.

- S. Rahmadhani, H. Setiyanto, M.A. Zulfikar, Electropolymerized of aniline as a new molecularly imprinted polymer for determination of phenol: A study for phenol sensor, Int. Semin. Sensors, Instrumentation, Meas. Metrol., Institute of Electrical and Electronics Engineers Inc., 2017, 124-128.

- L. Vacareanu, A.M. Catargiu, M. Grigoras, An electrochemical study of two self-dopable water-soluble aniline derivatives: Electrochemical deposition of copolymers, J. Anal. Methods Chem., 2012. https://doi.org/10.1155/2012/737013.

- T. Kobayashi, H. Yoneyama, H. Tamura, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem., 1984, 177, 281-291.

- B. Wang, J. Tang, F. Wang, Electrochemical polymerization of aniline, Synth. Met., 1987, 18, 323-328.

- B. Rakovska, A. Valiūnienė, A. Malinauskas, V. Kubilius, R. Valiūnas, Electrochemical formation of polyaniline on Ti and electrochemically oxidized Ti electrodes, The Electrochemical Society, 2012, 37, 2314-2314.

- O.E. Fayemi, A.S. Adekunle, E.E. Ebenso, Electrochemical detection of phenanthrene using nickel oxide doped PANI nanofiber-based modified electrodes, Journal Nanomater, 2016, 2016. https://doi.org/10.1155/2016/9614897.

- H. Tang, Y. Ding, C. Zang, J. Gu, Q. Shen, J. Kan, Effect of Temperature on Electrochemical Degradation of Polyaniline, Int. J. Electrochem. Sci., 2014, 12, 7239-7252.






Polymer Chemistry