β-11-Keto-boswellic acid derived amides: synthesis and cytotoxicity

Authors

  • Ratna Kancana Wolfram Martin-Luther Universität Halle-Wittenberg
  • Anja Barthel-Niesen Martin-Luther Universität Halle-Wittenberg
  • Renate Schäfer Martin-Luther Universität Halle-Wittenberg
  • Lucie Heller Martin-Luther Universität Halle-Wittenberg
  • Ahmed Al-Harrasi University of Nizwa
  • René Csuk Martin-Luther Universität Halle-Wittenberg http://orcid.org/0000-0001-7911-290X

DOI:

https://doi.org/10.13171/mjc65/01710032249-csuk

Abstract

The aim of this study was to prepare 11-keto-β-boswellic acid derivatives modified at C-24 and to evaluate their in vitro cytotoxicity. Acetyl-11-keto-β-boswellic acid (AKBA) was isolated from frankincense and transformed into 11-keto-β-boswellic acid (KBA). Both compounds served as starting materials for the synthesis of several amides or hydrazides. The derivatives were fully characterized, and their cytotoxicity was evaluated in vitro using sulforhodamine B (SRB) assays employing two human tumor cell lines (A2780 and MCF7) as well as nonmalignant mouse fibroblasts (NIH 3T3). Nearly all of the compounds were more cytotoxic than their parent compounds. The highest cytotoxicity was observed for (3 α, 4 β) 3-acetyloxy-N-(3- aminopropyl)-11-oxo-urs-12-en-24-amide (15) and (3 α, 4 β) 3-acetyloxy-N-[4-(3-aminopropyl)piperazin-1-yl]- propyl-11-oxo-urs-12-en-24-amide (16) and the ovarian carcinoma cell line A2780. These compounds showed EC50 = 1.0-1.7 µM while being significantly less toxic for the mouse fibroblasts NIH 3T3 (EC50 = 9.3-16.3µM). Thus, compounds 15 and 16 have good antitumor effects and may serve as starting points for developing potential and selective antitumor agents

Author Biographies

Ratna Kancana Wolfram, Martin-Luther Universität Halle-Wittenberg

Organic ChemistryPhD student

Anja Barthel-Niesen, Martin-Luther Universität Halle-Wittenberg

Organic ChemistryPostDoc

Renate Schäfer, Martin-Luther Universität Halle-Wittenberg

Organic ChemistrySenior Researcher

Lucie Heller, Martin-Luther Universität Halle-Wittenberg

Organic ChemistryPostDoc

Ahmed Al-Harrasi, University of Nizwa

UoN Chair of Oman's Medicinal Plants and Marine Natural ProductsHead of Department

René Csuk, Martin-Luther Universität Halle-Wittenberg

Organic ChemistryHead of Department

References

- E. M. Al-Mathal, Commiphora molmol in human welfare, J. Egypt. Soc. Parasitol., 2007, 37, 449-468.

- A. M. D. Tonkal, T. A. Morsy, An update review on Commiphora molmol and related species, J. Egypt. Soc. Parasitol., 2008, 38, 763-796.

- S. Ahmed, A. Alam, M. Shahabuddin, I. Khan, H. Ali, Versatile pharmacological action and compound formulation of Kundur in Unani medicine: a review, Int. J. Pharmacogn., 2014, 1, 627-631.

- F. Iram, S. A. Khan, A. Husain, Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review, Asian Pacif. J. Trop. Biomed., 2017, 7, 513-523.

- H. Hussain, A. Al-Harrasi, R. Csuk, U. Shamraiz, I. R. Green, I. Ahmed, I. A. Khan, Z. Ali, Therapeutic potential of boswellic acids: a patent review (1990-2015), Expert Opin. Ther. Pat., 2017, 27, 81-90.

- N. Bansal, S. Mehan, S. Kalra, D. Khanna, Boswellia serrata-frankincense (a jesus gifted herb); an updated pharmacological profile, Pharmacologia, 2013, 4, 457-463.

- Z. Du, Z. Liu, Z. Ning, Y. Liu, Z. Song, C. Wang, A. Lu, Prospects of Boswellic Acids as Potential Pharmaceutics, Planta Med., 2015, 81, 259-271.

- A. Moussaieff, R. Mechoulam, Boswellia resin: from religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials, J. Pharm. Pharmacol., 2009, 61, 1281-1293.

- M. Zviely, M. Li, Sesquiterpenoids: the holy fragrance ingredients, Perfum. Flavor., 2013, 38, 52-55.

- T. Eichhorn, H. J. Greten, T. Efferth, Molecular determinants of the response of tumor cells to boswellic acids, Pharmaceuticals, 2011, 4, 1171-1182.

- P. Fan, T. Li, Y. Ye, Q. Luo, H. Yuan, H. Lou, Synthesis and cytotoxic activity of boswellic acid analogues, Phytochem. Lett., 2016, 18, 99-104.

- Y.S. Park, J. H. Lee, J. A. Harwalkar, J. Bondar, H. Safayhi, M. Golubic, Acetyl-11-keto-β-boswellic acid (AKBA) is cytotoxic for meningioma cells and inhibits phosphorylation of the extracellular-signal regulated kinase 1 and 2, Adv. Exp. Med. Biol., 2002, 507, 387-393.

- S. A. Ali, S. A. Zaitone, Y. M. Moustafa, Boswellic acids synergize antitumor activity and protect against the cardiotoxicity of doxorubicin in mice bearing Ehrlich's carcinoma, Can. J. Physiol. Pharmacol., 2015, 93, 695-708

- R. Csuk, A. Barthel-Niesen, A. Barthel, R. Schäfer, A. Al-Harrasi, 11-Keto-boswellic acid derived amides and monodesmosidic saponins induce apoptosis in breast and cervical cancers cells, Eur. J. Med. Chem., 2015, 100, 98-105.

- R. Csuk, A. Barthel-Niesen, D. Ströhl, R. Kluge, C. Wagner, A. Al-Harrasi, Oxidative and reductive transformations of 11-keto-β-boswellic acid, Tetrahedron, 2015, 71, 2025-2034.

- R. Csuk, A. Niesen-Barthel, R. Schäfer, A. Barthel, A. Al-Harrasi, Synthesis and antitumor activity of ring A modified 11-keto-β-boswellic

acid derivatives, Eur. J. Med. Chem., 2015, 92, 700-711.

- S. Kapoor, Boswellic acid and its inhibitory effect on tumor growth in systemic malignancies: an emerging concept in oncology, Future Oncol., 2013, 9, 627-628.

- T. Li, P. Fan, Y. Ye, Q. Luo, H. Lou, Ring A-modified Derivatives from the Natural Triterpene 3-O-acetyl-11-keto-β-Boswellic Acid and their Cytotoxic Activity, Anti-Cancer Agents Med. Chem., 2017, 17, 1153-1167.

- N. K. Roy, A. Deka, D. Bordoloi, S. Mishra, A. P. Kumar, G. Sethi, A.B. Kunnumakkara, The potential role of boswellic acids in cancer prevention and treatment, Cancer Lett., 2016, 377, 74-86.

- R. K. Wolfram, A. Barthel-Niesen, R. Schäfer, L. Heller, A. Al-Harrasi, R. Csuk, Synthesis and cytotoxic screening of β-boswellic acid derivatives, Medit. J. Chem., 2017, 6, 142-164.

- J. Jauch, J. Bergmann, An efficient method for the large-scale preparation of 3-O-acetyl-11-oxo-beta-boswellic acid and other boswellic acids, Eur. J. Org. Chem., 2003, 4752-4756.

- O. B. Flekhter, E. I. Boreko, L. R. Nigmatullina, N. I. Pavlova, S. N. Nikolaeva, O. V. Savinova, V. F. Eremin, L. A. Baltina, F. Z. Galin, G. A. Tolstikov, Synthesis and antiviral activity of hydrazides and substituted benzalhydrazides of betulinic acid and its derivatives, Bioorg. Khim., 2003, 29, 326-332.

- N. V. Galaiko, I. A. Tolmacheva, L. V. Volkova, V. V. Grishko, Synthesis of 2,3-seco-triterpene hydrazonohydrazides of the lupane and 19β,28-epoxy-18α-oleanane types, Chem. Nat. Compd., 2012, 48, 72-74

- V. V. Grishko, I. A. Tolmacheva, N. V. Galaiko, A. V. Pereslavceva, L. V. Anikina, L. V. Volkova, B. A. Bachmetyev, P. A. Slepukhin, Synthesis, transformation and biological evaluation of 2,3-secotriterpene acetylhydrazones and their derivatives, Eur. J. Med. Chem., 2013, 68, 203-211.

- S. Huneck, Triterpenes. VIII. Rearrangement of 1-substituted triterpenes into A-nor-B-homotriterpenes, Tetrahedron Lett., 1963, 1977-1980.

- O. O. Oyedeji, F. O. Shode, A. O. Oyedeji, S. P. Songca, E. T. Gwebu, G. M. Hill, W. N. Setzer, Semi-synthesis of nitrogen derivatives of oleanolic acid and effect on breast carcinoma MCF-7 cells, Anticancer Res., 2014, 34, 4135-4139.

- S. Shen, X. Xu, Z. Liu, J. Liu, L. Hu, Synthesis and structure-activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors, Bioorg. Med. Chem., 2015, 23, 1982-1993.

Downloads

Published

2017-10-04

Issue

Section

Medicinal Chemistry