The effect of Streptococcus mutans on the Corrosion Behavior of Nickel-Titanium Dental Alloys - In Vitro Study

Authors

  • Asmaa Marda Research Team in Microbiology, Faculty of Medicine and Pharmacy, university Mohamed V, Rabat, BP 6203, Morocco.
  • Khadija Mouflih Laboratory of Materials, Nanotechnology and Environment, Mohammed V University in Rabat, Faculty of Sciences Morocco.
  • Abdelkebir Bellaouchou Laboratory of Materials, Nanotechnology and Environment, Mohammed V University in Rabat, Faculty of Sciences Morocco.
  • abdallah Guenbour Laboratory of Materials, Nanotechnology and Environment, Mohammed V University in Rabat, Faculty of Sciences Morocco.
  • Asmae Elmansari Faculty of Dental Medicine graduate, Mohammed V University, Rabat, Morocco.
  • Karim Souly Laboratory of Microbiology, Ibn Sina University Medical Center of Rabat, 10100, Morocco.
  • Mimoun Zouhdi Laboratory of Microbiology, Ibn Sina University Medical Center of Rabat, 10100, Morocco.
  • Fatima Zaoui Department of Research in Biomaterials and Saliva Biomarkers, Faculty of Dental Medicine, Mohammed V University (UM5), Rabat, BP 6212 Morocco.
  • Loubna Bahije Department of Research in Biomaterials and Saliva Biomarkers, Faculty of Dental Medicine, Mohammed V University (UM5), Rabat, BP 6212 Morocco.

DOI:

https://doi.org/10.13171/mjc861907168am

Abstract

This study aimed to compare the resistance of dental alloys to corrosion in a solution containing oral bacteria named Streptococcus mutans (S.mutans). The electrochemical behavior of Nickel-Titanium (NiTi) was investigated in sterile Fusayama artificial saliva (AS) with the enrichment medium tryptic soy broth (TSB) in solution 1 and (AS) with (TSB) and bacteria in solution 2. The electrochemical procedures selected for this work were open circuit potentials (OCP), Potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The NiTi surface was examined using optical microscopy.      After 24 hours of immersion in artificial saliva, the results have shown that NiTi revealed high corrosion reactivity in the presence of S. mutans and present pitting corrosion on the surface.

References

J.R. Gurenlian, The Role of Dental Plaque Biofilm in Oral Health. Journal of Dental Hygiene. 2007, 81(5), 11.

R. Huang, M. Li, R.L. Gregory, Bacterial interactions in dental biofilm. Virulence. 2011, 2(5), 435-44.

3. P.D. Marsh, A. Moter, D.A Devine, Dental plaque biofilms: communities' conflict and control. Periodontology, 2011, Feb, 55(1),16-35.

D.A Spratt, J. Pratten, Biofilms and the Oral Cavity. Reviews in Environmental Science and Biotechnology. 2003, Jun 1, 2(2-4),109-120.

M. Matsumoto Nakono, Role of Streptococcus mutans surface proteins for biofilm formation, Japanese Dental Science Review, 2018, 54,

-29.

P. Marsh, M. Martin, Oral microbiology. 5th ed. Edinburgh, New York, Elsevier, 2009,

pages.

P. Harikrishnan, T.S. Subha, V. Kavitha,

A. Gnanamani, Microbial Adhesion on Orthodontic Ligating Materials, An in Vitro Assessment. Advances in Microbiology. 2013, 03(01), 108-114.

M. Rosentritt, S. Hahnel, G. Gröger, B. Mühlfriedel, R. Bürgers, G. Handel, Adhesion of Streptococcus mutans to various dental

materials in a laminar flow chamber system. J Biomed Mater Res Part B Appl Biomater, 2008 Jul, 86(1), 36–44.

M. Sumita, T. Hanawa, I. Ohnishi, T. Yoneyama, Failure Processes in Biometallic Materials. In: I.M.O.R. Karihaloo, Comprehensive Structural Integrity, Pergamon, Oxford, 2003, 131-167.

I.H. Kim, H.S. Park, Y.K. Kim, K.H. Kim, T.Y. Kwon, Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel archwires. The Angle Orthodontist. 2014, Jul, 84(4),

-686.

G. Mabilleau, S. Bourdon, M.L. Joly-Guillou, R. Filmon, M.F. Baslé, D. Chappard, Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium, 2006 Jan, 2(1), 121-129.

J.C.M. Souza, P. Ponthiaux, M. Henriques,

R. Oliveira, W. Teughels, J-P. Celis, and al. Corrosion behaviour of titanium in the presence of Streptococcus mutans. Journal of Dentistry, 2013, Jun, 41(6), 528-534.

L. Bahije, H. Benyahia, S. El Hamzaoui,

M. Ebn Touhami, R. Bengueddour, W. Rerhrhaye, and al. Behavior of NiTi in the presence of oral bacteria: Corrosion by Streptococcus mutans. International Orthodontics. 2011, Mar, 9(1), 110-119.

T. Fusayama, T. Katayori, S. Nomoto, Corrosion of gold and amalgam placed in contact with each other. Journal of Dental Research, 1963, 42, 1183-1197.

S. Maruthamuthu, A. Rajasekar,

S. Sathiyanarayanan, N. Muthukumar,

N. Palaniswamy, Electrochemical behaviour of microbes on orthodontic wires. Current science, 2005, 89(6), 988.

J.C. Chang, Y. Oshida, R.L. Gregory, C.J. Andres, T.M. Barco, BDt elEctrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng. 2003,13(3), 281-295.

O. Moos, P. Gümpel, Comparison of the microbiological influence on the electro-chemical potential of stainless steel between macro- and micro-areas of specimens. Electrochimica Acta. 2008, Dec,54(1), 53-59.

I.H. Liu, T.M. Lee, C. Y. Chang, C.K. Liu, Effect of load deflection on corrosion behavior of NiTi wire. Journal of Dental research 2007, 86(6), 539-597.

J.A. Lemos, S.R. Palmer, L. Zeng, Z.T. Wen, J.K. Kajfasz, I.A. Freires,

J. Abranches, L.J. Brady, the Biology of Streptococcus mutans. Microbiol Spectr., 2019, jan, 7(1). doi: 10.1128/microbiolspec.GPP3-0051-2018.

Published

2019-07-16

Issue

Section

Biological Chemistry