Unexpected cytotoxicity of a triisopropylsilylated syringaldehyde derived cinnamic acid amide

Authors

  • Björn A Weber Martin-Luther Universität Halle-Wittenberg
  • Ratna Kancana Wolfram Martin-Luther Universität Halle-Wittenberg
  • Sophie Hoenke Martin-Luther Universität Halle-Wittenberg
  • Lucie Fischer Martin-Luther Universität Halle-Wittenberg
  • Ahmed Al-Harrasi University of Nizwa
  • René Csuk Martin-Luther Universität Halle-Wittenberg http://orcid.org/0000-0001-7911-290X

DOI:

https://doi.org/10.13171/mjc91190820520rc

Abstract

A small series of substituted cinnamic acid amides was prepared and screened for their cytotoxic activity. As a rather astonishing and unprecedented result, compound 5 holding a triisopropylsilyl (TIPS) protecting group at position 4 of the aromatic ring was highly cytotoxic (EC50 = 3.2 mM for HT29 human colon adenocarcinoma cells) while analogs with a methoxy or hydroxyl group at this position were of low cytotoxicity or not cytotoxic at all.

Author Biography

René Csuk, Martin-Luther Universität Halle-Wittenberg

Organic ChemistryHead of Department

References

- A. Gunia-Krzyżak, K. Słoczyńska, J. Popiół, P. Koczurkiewicz, H. Marona, E. Pękala, Cinnamic acid derivatives in cosmetics: current use and future prospects, Int. J. Cosmet. Sci. 2018, 40, 356-366.

- E. Pontiki, A. Peperidou, I. Fotopoulos, D. Hadjipavlou-Litina, Cinnamate hybrids: A unique family of compounds with multiple biological activities, Curr. Pharm. Biotechnol. 2018, 19, 1019-1048.

- K. Rajendran, A. Anwar, N.A. Khan, M.R. Shah, R. Siddiqui, Trans-Cinnamic Acid Conjugated Gold Nanoparticles as Potent Therapeutics against Brain-Eating Amoeba Naegleria fowleri, ACS Chem. Neurosci. 2019, 10, 2692-2696.

- S.A. Tishina, V.S. Stroylov, I.A. Zanyatkin, A.K. Melnikova, V.I. Muronetz, Y.Y. Stroylova, Cinnamic acid derivatives as the potential modulators of prion aggregation, Mendeleev Commun. 2017, 27, 493-494.

- S. Ullah, D. Kang, S. Lee, M. Ikram, C. Park, Y. Park, S. Yoon, P. Chun, H.R. Moon, Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells, Eur. J. Med. Chem. 2019, 161, 78-92.

- S. Ullah, C. Park, M. Ikram, D. Kang, S. Lee,

J. Yang, Y. Park, S. Yoon, P. Chun, H.R. Moon, Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues, Bioorg. Chem. 2019, 87, 43-55.

- R. Wang, W. Yang, Y. Fan, W. Dehaen, Y. Li, H. Li, W. Wang, Q. Zheng, Q. Huai, Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties, Bioorg. Chem. 2019, 88, 102951. doi: 10.1016/j.bioorg.2019.102951.

- K. Yang, Y. Li, Q. Tang, L. Zheng, D. He, Synthesis, mitochondrial localization of fluorescent derivatives of cinnamamide as anticancer agents, Eur. J. Med. Chem. 2019, 170, 45-54.

- I. R.S. Baliza, S.L.R. Silva, L.D. Santos, J.H.A. Neto, R.B. Dias, C.B.S. Sales, C.A.G. Rocha, M.B.P. Soares, A.A. Batista, D.P. Bezerra, Ruthenium Complexes With Piplartine Cause Apoptosis Through MAPK Signaling by a p53-Dependent Pathway in Human Colon Carcinoma Cells and Inhibit Tumor Development in a Xenograft Model, Front. Oncol. 2019, 9, doi: 10.3389/fonc.2019.00582

- A. A. Farooqi, R. Attar, I. Yaylim, M.Z. Qureshi, M. Todorovska, G.S. Karatoprak, S. Najafi, U.Y. Sabitaliyevich, T.G. Zhenisovna, D.P. de Sousa, X.K. Lin, Piperlongumine as anticancer agent: The story so far about killing many birds with one stone, Cell. Mol. Biol. 2018, 64, 102-107.

- K. Piska, A. Gunia-Krzyzak, P. Koczurkiewicz, K. Wojcik-Pszczola, E. Pekala, Piperlongumine (piplartine) as a lead compound for anticancer agents - Synthesis and properties of analogues: A mini-review, Eur. J. Med. Chem. 2018, 156,

-20.

- Y. H. Seo, J.K. Kim, J.G. Jun, Synthesis and biological evaluation of piperlongumine derivatives as potent anti-inflammatory agents, Bioorg. Med. Chem. Lett. 2014, 24, 5727-5730.

- S. Sommerwerk, R. Kluge, D. Ströhl, L. Heller, A.E. Kramell, S. Ogiolda, P. Liebing, R. Csuk, Synthesis, characterization and cytotoxicity of new piplartine dimers, Tetrahedron 2016, 72, 1447-1454.

- H. Wang, H. Jiang, C. Corbet, S. de Mey,

K. Law, T. Gevaert, O. Feron, M. De Ridder, Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems, Cancer Lett. 2019, 450, 42-52.

- Z. S. Deng, C.F. Li, D. Luo, P. Teng, Z.Y. Guo, X. Tu, K. Zou, D.C. Gong, A new cinnamic acid derivative from plant-derived endophytic fungus Pyronema sp., Nat. Prod. Res. 2017, 31, 2413-2419.

- K. Misra, A. Nag, A. Sonawane, N-(2-Bromo-4-fluorophenyl)-3-(3,4-dihydroxyphenyl)- acrylamide (CPAM), a small catecholic amide as an antioxidant, anti-diabetic and antibacterial compound, RSC Adv. 2016, 6, 104632-104641.

- N. Nowacka, R. Nowak, M. Drozd, M. Olech,

R. Los, A. Malm, Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms, Plos One 2015, 10, e0140355; doi: 10.1371/journal.pone.0140355.

- E. Sieniawska, R. Sawicki, M. Swatko-Ossor, A. Napiorkowska, A. Przekora, G. Ginalska, E. Augustynowicz-Kopec, The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains, Molecules 2018, 23, E176; doi: 10.3390/molecules23010176.

- G. R. Silveira, K.A. Campelo, G.R.S. Lima, L.P. Carvalho, S.S. Samarao, O. Vieira-da-Motta, L. Mathias, C. R.R. Matos, I.J.C. Vieira, E.J.T. de Melo, E.J. Maria, In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid, Molecules 2018, 23, E774; doi: 10.3390/molecules23040774.

- S. T. Xu, D.H. Li, L.L. Pei, H. Yao, C.Q. Wang, H. Cai, H.Q. Yao, X.M. Wu, J.Y. Xu, Design, synthesis and antimycobacterial activity evaluation of natural oridonin derivatives, Bioorg. Med. Chem. Lett. 2014, 24, 2811-2814.

- S. Ghafary, Z. Najafi, M. Mohammadi-Khanaposhtani, H. Nadri, N. Edraki, N. Ayashi, B. Larijani, M. Amini, M. Mahdavi, Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study, Arch. Pharm. 2018, 351, e1800115; doi: 10.1002/ardp.201800115.

- J. Gomez, M.J. Simirgiotis, B. Lima, J.D. Paredes, C.M.V. Gabutti, C. Gamarra-Luques, J. Borquez, L. Luna, G.H. Wendel, A.O. Maria, G.E. Feresin, A. Tapia, Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction, Molecules 2019, 24, E1085; doi: 10.3390/molecules24061085.

- S. L. Guzman-Gutierrez, A. Nieto-Camacho, J.I. Castillo-Arellano, E. Huerta-Salazar, G. Hernandez-Pasteur, M. Silva-Miranda, O. Arguello-Najera, O. Sepulveda-Robles, C.I. Espitia, R. Reyes-Chilpa, Mexican Propolis: A Source of Antioxidants and Anti-Inflammatory Compounds, and Isolation of a Novel Chalcone and epsilon-Caprolactone Derivative, Molecules 2018, 23, E334. doi: 10.3390/molecules23020334.

- J. H. Kim, K.L. Chan, L.W. Cheng, Cinnamic Acid Analogs as Intervention Catysts for Overcoming Antifungal Tolerance, Molecules 2017, 22, E1783; doi:10.3390/molecules22101783.

- A. Peperidou, E. Pontiki, D. Hadjipavlou-Litina, E. Voulgari, K. Avgoustakis, Multifunctional Cinnamic Acid Derivatives, Molecules 2017, 22, E1247; doi: 10.3390/molecules22081247.

- K. Takao, K. Toda, T. Saito, Y. Sugita, Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities, Chem. Pharm. Bull. 2017, 65, 1020-1027.

- H. Miyachi, Design, synthesis, and structure-activity relationship study of peroxisome proliferator-activated receptor (PPAR)

δ-selective ligands, Curr. Med. Chem. 2007, 14, 2335-2343.

- L. M. Wang, B. Waltenberger, E.M. Pferschy-Wenzig, M. Blunder, X. Liu, C. Malainer, T. Blazevic, S. Schwaiger, J.M. Rollinger, E.H. Heiss, D. Schuster, B. Kopp, R. Bauer, H. Stuppner, V.M. Dirsch, A.G. Atanasov, Natural product agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma): a review, Biochem. Pharmacol. 2014, 92, 73-89.

- J. Wiemann, J. Karasch, A. Loesche, L. Heller, W. Brandt, R. Csuk, Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase, Eur. J. Med. Chem. 2017, 139, 222-231.

- Z. Li, F.C.F. Ip, N.Y. Ip, R. Tong, Highly trans-Selective Arylation of Achmatowicz Rearrangement Products by Reductive

γ-Deoxygenation and Heck-Matsuda Reaction: Asymmetric Total Synthesis of (-)-Musellarins A-C and Their Analogues, Chem. - Eur. J. 2015, 21, 11152-11157.

- F. H. Clarke, G.B. Silverman, C.M. Watnick, N. Sperber, 3-Azaphenothiazine and dialkylaminoalkyl derivatives, J. Org. Chem. 1961, 26, 1126-1132.

- J. R. Horton, C.B. Woodcock, Q. Chen, X. Liu, X. Zhang, J. Shanks, G. Rai, B.T. Mott, D.J. Jansen, S.C. Kales, M.J. Henderson, M. Cyr,

K. Pohida, X. Hu, P. Shah, X. Xu, A. Jadhav, D.J. Maloney, M.D. Hall, A. Simeonov, H. Fu, P.M. Vertino, X. Cheng, Structure-Based Engineering of Irreversible Inhibitors against Histone Lysine Demethylase KDM5A, J. Med. Chem. 2018, 61, 10588-10601.

- M. R. Stentzel, D.A. Klumpp, Functionalized fluorenes via dicationic electrophiles, Tetrahedron Lett. 2019, 60, 1675-1677.

- W. Tian, J. Li, Z. Su, F. Lan, Z. Li, D. Liang,

C. Wang, D. Li, H. Hou, Novel Anthraquinone Compounds Induce Cancer Cell Death through Paraptosis, ACS Med. Chem. Lett. 2019, 10, 732-736.

- I. A. Moussa, S.D. Banister, C. Beinat,

N. Giboureau, A.J. Reynolds, M. Kassiou, Design, Synthesis, and Structure-Affinity Relationships of Regioisomeric N-Benzyl Alkyl Ether Piperazine Derivatives as sigma-1 Receptor Ligands, J. Med. Chem. 2010, 53, 6228-6239.

Downloads

Published

2019-08-20

Issue

Section

Medicinal Chemistry