Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP) electrodes in sulfuric acid solution

Authors

  • Naima Farfour LCPM, Laboratory of Chemistry and Physics of Materials, Department of Chemistry, Faculty of Sciences, University Hassan II-Mohammedia, Cdt Driss El Harti, PO Box 7955, Sidi Othman Casablanca, Morocco
  • Mohamed El Mahi Chbihi LCPM, Laboratory of Chemistry and Physics of Materials, Department of Chemistry, Faculty of Sciences, University Hassan II-Mohammedia, Cdt Driss El Harti, PO Box 7955, Sidi Othman Casablanca, Morocco
  • Driss Takky LCPM, Laboratory of Chemistry and Physics of Materials, Department of Chemistry, Faculty of Sciences, University Hassan II-Mohammedia, Cdt Driss El Harti, PO Box 7955, Sidi Othman Casablanca, Morocco
  • Khadija Eddahaoui LCPM, Laboratory of Chemistry and Physics of Materials, Department of Chemistry, Faculty of Sciences, University Hassan II-Mohammedia, Cdt Driss El Harti, PO Box 7955, Sidi Othman Casablanca, Morocco
  • Said Benmokhtar LCPM, Laboratory of Chemistry and Physics of Materials, Department of Chemistry, Faculty of Sciences, University Hassan II-Mohammedia, Cdt Driss El Harti, PO Box 7955, Sidi Othman Casablanca, Morocco

DOI:

https://doi.org/10.13171/mjc.2.4.2013.12.10.23

Abstract

In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO4)3 (CaTP) and Na5Ti(PO4)3 (NaTP) compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.

References

K.V. Kordesh, G.R. Simader, Chem. Rev. 1995, 95, 191-207.

O. Diat, G. Gebel, Nat. Mater. 2008, 7, 13-14.

K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, T. Kobayashi, Angew.

Chem. Int. Ed. 2007, 46 8024-8027.

R.F. Service, Science. 2002, 296, 1222-1224.

W. Tokarz, H. Siwek, P. Piela, A. Czerwinski, Electrochim. Acta. 2007, 52, 5565-5573.

C. Lamy, A. Lima, V. LeRehun, F. Delime, C. Countanceau, J. Leger, J. Power Sources. 2002, 105, 283-296.

A.S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells. 2001, 1, 133-161.

P. Piela, P. Zelenay, Fuel Cell Rev. 2004, 1, 17-23.

N.R. Elezovic, B.M. Babic, V.R. Radmilovic, S.Lj. Gojkovic, N.V. Krstajic, Lj.M. Vracar, J. Power Sources. 2008, 175, 250-255.

L. Niu, Q. Li, F. Wei, S. Wu, P. Liu, X. Cao, J. Electroanal. Chem. 2005, 578, 331-337.

M. El M. Chbihi, D. Takky, F. Hahn, H. Huser, J. M. Léger, C. Lamy, J. Electroanal. Chem. 1999, 463, 63-71.

M. El M. Chbihi, D. Takky, F. Hahn, H. Huser, J. M. Léger, C. Lamy, Ann. Chim. Sci. Mat. 2007, 32, (1) 19-36.

T. Sato, K. Kunimatsu, M. Watanabe, H. Uchida, J. Nanosci. Nanotechnol. 2011, 11, 5123-5130.

D.M. Han, Z.P. Guo, R. Zeng, C. Kim, Y.Z. Meng, H.K. Liu, Int. J. Hydrogen Energy. 2009, 34(5), 2426-2434

S. Mukerjee, R.C. Urian, Electrochim. Acta. 2002, 47, 3219-3231.

Y.Q. Wang, Z.D. Wei, L. Li, M.B. Ji, Y. Xu, P.K. Shen, J. Phys. Chem C. 2008, 112, 18672-18676.

H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. C. 1993, 97, 12020-12029.

Bockris, J.O’M.; Wroblowa, J. Electroanal. Chem. Interfacial Electrochem. 1964, 7, 428-451.

Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part II. J. Electroanal. Chem. Interfacial Electrochem. 1975, 60, 267-273.

Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K.L.; Smotkin, E.S.; Sung, Y.E.; Kim, H.; Thomas, S.; Wieckowski, J. Phys. Chem. 2000, 104, 3518-3531.

Waszczuk, P.; Wieckowski, A.; Zelenay, P.; Gottesfeld, S.; Coutanceau, C.; Leger, J.M.; Lamy, C, J. Electroanal. Chem. 2001, 511, 55-64.

P. Justin, G.R. Rao, Int. J. Hydrogen Energy. 2011, 36, 5875-5884.

P. Justin, G.R. Rao, Catal. Today. 2009, 141, 138-143.

J.Y. Xiang, J.P. Tu, L. Zhang, X.L. Wang, Y. Zhou, Y. Q. Qiao, Y. Lu, J. Power Sources. 2010, 195, 8331-8335.

S. Yoo, T. Jeon, K. Lee, K. Park, Y. Sung, Chem. Commun. 2010, 46, 794-796.

M. Saha, R. Li, M. Cai, X. Sun, Electrochem. Solid-State Lett. 2007, 10, B130-133.

P. Justin, P.H.K. Charan, G.R. Rao, Appl. Catal. B: Environ. 2010, 100, 510-515.

A. Ueda, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki, T. Kobayashi, Catal. Today. 2003, 84 , 223-229.

Goodenough, J.B.; Hong, H.Y.P. Kafalas, J.A. Mat. Res. Bull. 1976, 11, 2, 203-220.

Koboyashi, H.; Shigemura, H.; Tabuchi, M.; Sakaebe, H.; Ado, K. & Kagayama, H. Journal of the Electrochemical Society. 2000, 147, 3 960-969.

Manthiram, A. Goodenough, JB. J. Solid State Chem. 1987, 71, 349-360.

Manthiram, A. Goodenough, JB. Journal of Power Sources. 1989, 26, 403-408.

M. Morcrette, JB. Leriche, S. Patoux, C. Wurm, C. Masquelier, Electrochem. Solid-State Lett. 2003, 6, 80-84.

S. Senbhagaraman, T. N. Guru Rowb and A. M. Umarji. J. Mater. Chem. 1993, 3, 309-314.

Dowty, ATOMS. Version 5.1. Shape Software E., Kingsport, Tennessee 37663 USA 2000.

P. Scherrer, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse. 1918, 26, 98-100.

S. Krimi, I. Mansouri, A. El Jazouli, J.P. Chaminade, P. Gravereau, G. Le Flem, J. Solid State Chem. 1993, 105, 561-566.

Downloads

Published

2013-10-12

Issue

Section

Electrochemistry