A DFT reinvestigation of chemo- and stereoselectivity epoxidation from α- and ɣ-trans himachalene with meta Chloroperoxybenzoic acid
DOI:
https://doi.org/10.13171/mjc92190919645aoa/hbeAbstract
In this work the epoxidation reaction of the α- and ɣ-trans himachalene in the presence of meta chloroperoxybenzoic acid (m-CPBA) has been studied within the Density Functional Theory (DFT) method at the B3LYP/6-311G(d,p) level in dichloromethane as a solvent, in order to shed light on the chemo- and stereoselectivity in the course of the reaction. Analysis of the Conceptual Density Functional Theory (CDFT) reactivity indices indicate that the m-CPBA will behave as electrophilic while α- and ɣ-trans himachalene will behave as a nucleophile and the attacks observed experimentally are correctly predicted by the electrophilic Pk + and nucleophilic Pk - Parr functions. The two reactive paths associated with chemo and stereoselectivity approach modes of m-CPBA on C=C reactive sites in α and ɣ-trans himachalene have been analyzed. They showed that m-CPBA reacted as electrophile whereas α- and ɣ- trans himachalene as a nucleophile. The Monoepoxidation of α- and ɣ- trans himachalene leads to the formation of two stereoisomers, on the most substituted double bond "C=C», one of the two is a majority. The diepoxidation reaction of α- and ɣ- trans hReferences
- F. Couic-Marinier, A. Lobstein, Les huiles essentielles gagnent du terrain à l’officine, Actualités pharmaceutiques, 2013, 52, 18-21.
- A. Chekroun, A. Jarid, A. Benharref, A. Boutalib, Computational study of chemo-and stereoselectivity of α-cis, α-trans and α′-trans-himachalene epoxidation by MCPBA, Journal of Molecular Structure: THEOCHEM, 2002, 588, 201-210.
- M. Plattier, P. Teisseire, Essential oil of the Atlas cedar, Recherches, 1974, 19, 131-144.
- A. Chiaroni, C. Riche, A. Benharref, H. El Jamili, E. Lassaba, 2α, 3α: 7β, 13β-Diepoxy-trans-himachalane, Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1171-1173.
- A. Chiaroni, C. Riche, A. Benharref, H. El Jamili, E. Lassaba, 2α, 3α: 7β, 8β-Diépoxy-trans-himachalane, Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 2502-2504.
- M. A. Loriot, P. Beaune, La vitamine K époxyde réductase: du sang neuf dans les traitements anticoagulants oraux, La Revue de médecine interne, 2006, 27, 979-982.
- M. R. Loizzo, A. M. Saab, G. A. Statti, F. Menichini, Composition and α-amylase inhibitory effect of essential oils from Cedrus libani, Fitoterapia, 2007, 78, 323-326.
- M. Aziz, F. Rouessac, Syntheses en serie racemique et en serie optiquement active d'une famille de derives oxygenes naturels de l'ombelliferone. Structure spatiale du (-) epoxy-3'6'auraptene, Tetrahedron, 1988, 44, 101-110.
- B. Frérot, M. Renou, C. Malosse, C. Descoins, Isolement et identification de composés à activité phéromonale chez les femelles de l'arctiide Tyria jacobaeae: détermination biologique de la configuration absolue du composé majoritaire, Entomologia experimentalis et applicata, 1988, 46, 281-289.
- B. Satrani, M. Aberchane, A. Farah, A. Chaouch, M. Talbi, Composition chimique et activité antimicrobienne des huiles essentielles extraites par hydrodistillation fractionnée du bois de Cedrus atlantica Manetti, Acta botanica gallica, 2006, 153, 97-104.
- G. Venkatesh, M. Govindaraju, P. Vennila, Experimental and theoretical spectral investigations of 5-chloro-ortho-methoxyaniline using FT-IR, FT-Raman and DFT analysis, Indian. J. Chem., 2016, 55A, 413-422.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al. Gaussian 03, Revision C.02, Gaussian, Inc, 2004.
- R. Ghiasi, M. Z. Fashami, Tautomeric transformations and reactivity of isoindole and sila-indole: A computational study, J. Theor. Comput. Chem., 2014, 13, 1450041.
- A. E. Reed, L. a. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 1988, 88, 899-926.
- H. Bernhard Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, 3, 214-218.
- J. Tomasi, M. Persico, Molecular-interactions in solution - An overview of methods based on continuous distributions of the solvent, Chem. Rev., 1994, 94, 2027-2094.
- E. Cances, B. Mennucci, J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys., 1997, 107, 3032-3041.
- R. G. Parr, L. V. Szentpaly, S. Liu, Electrophilicity Index, J. Am. Chem. Soc., 1999, 121, 1922-1924.
- R. G. Parr, R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 1983, 105, 7512-7516.
- R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989, pp. 333.
- L. R. Domingo, E. Chamorro, P. Pérez, Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study, J. Org. Chem., 2008, 73, 4615-4624.
- L. R. Domingo, P. Pérez, The nucleophilicity N index in organic chemistry, Org. Biomol. Chem., 2011, 9, 7168-7175.
- W. Kohn, L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, J. Phys. Rev., 1965, 140, 1133-1138.
- R. Huisgen, P. Pöchlauer, G. Mlostoń, K. Polborn, Reactions of di(tert-butyl) diazomethane with acceptor-substituted ethylenes, Helv. Chim. Acta., 2007, 90, 983-998.
- S. A. Siadati, An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene, Tetrahedron Lett., 2015, 56, 4857-4863.
- L.R. Domingo, J.A. Saez, J.A. Joule, L. Rhyman, P, Ramasami, A DFT Study of the [3 + 2] versus [4 + 2] Cycloaddition Reactions of 1,5,6-Trimethylpyrazinium-3-olate with Methyl Methacrylate, J. Org. Chem., 2013, 78, 1621-1629.
- R. Jasiński, K. Mróz, A. Kącka, Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2,3,3(4)5-Tetrasubstituted-4-nitroisoxazolidines via 1,3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes, J. Heterocycl. Chem., 2016, 53, 1424-1429.
- X. Li, D. Wei, Z. Li, Theoretical study on DBU-catalyzed insertion of isatins into aryl difluoronitromethyl ketones: A case for predicting chemoselectivity using electrophilic parr function, ACS Omega, 2017, 2, 7029-7038.
- E. Chamorro, P. Pérez, L.R. Domingo, On the nature of Parr functions to predict the most reactive sites along with organic polar reactions, Chem. Phys. Lett., 2013, 582, 141-143.
- C. Morell, J.L. Gázquez, A. Vela, F. Guégan, H. Chermette, Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors, Phys. Chem. Chem. Phys., 2014, 16, 26832-26842.
- R. Jasiński, M. Ziółkowska, O.M. Demchuk, A. Maziarka, Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-substituted nitroethenes, Cent. Eur. J. Chem., 2014, 12, 586-593.
- A. K. Nacereddine, H. Layeb, F. Chafaa, A. Djerourou, L. R. Domingo, A DFT study of the role of the Lewis acid catalysts in the [3+ 2] cycloaddition reaction of the electrophilic nitrone isomer of methyl glyoxylate oxime with nucleophilic cyclopentene, RSC Adv., 2015, 5, 64098-64105.
- Z. Lakbaibi, A. Jaafar, H. Ben EL Ayouchia,
M. Tabyaoui, A. Boussaoud, Reactivity and mechanism of nucleophilic addition reaction of amine with alkene: A systematic DFT study J. Mediterranean of Chemistry, 2019, 8(1), 25-29.
- A. Benallou, Z. Lakbaibi, H. Garmes, H. El Alaoui EL Abdallaoui, The role of the polarity on the mechanism and selectivity in the [3+2] cycloaddition reaction between CF3-ynone ylide and azide group: A quantum chemical investigation J. Fluorine. Chem, 2019, 219, 79-91.
- L. R. Domingo, A new C–C bond formation model based on the quantum chemical topology of electron density, RSC Adv., 2014, 4,
-32428.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).