Design of Novel Biosensors for Determination of Phenolic Compounds using Catalyst-Loaded Reduced Graphene Oxide Electrodes

Authors

  • Ondrej Kubesa Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
  • Kathleen Morrisey Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
  • Samantha Mathews Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
  • John Proetta Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
  • Christopher Li Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
  • Petr Skladal Department of Biochemistry, Masaryk University, 62500 Brno, Czech Republic
  • Maria Hepel Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA

DOI:

https://doi.org/10.13171/mjc.3.3.2014.14.06.12

Abstract

Facile and inexpensive method for designing high performance sensors for H2O2 and polyphenols has been developed. The proposed sensors are based on high electrocatalytic activity of Prussian Blue (PB) nanoparticles deposited in situ on high surface area graphene nanosheet-based thin films on a graphite electrode. The exfoliated graphene nanosheets were formed by attaching graphene oxide to the electrode surface followed by their electrochemical reduction to obtain the reduced graphene oxide (rGO), providing high surface area and excellent current-carrying capabilities to the sensory film. The PB catalyst nanoparticles were deposited electrochemically on rGO. This procedure is very time efficient as it reduces the time of sensor preparation from 3 days (according to recent literature) to several hours. The proposed method provides simple means to obtain highly reliable and stable sensory films. The sensor shows a dynamic range of 1–500 μM H2O2 and a rapid response of 5 s to reach 95% of a steady-state response. When combined with immobilized enzymes (horseradish peroxidase or laccase oxidase), it can serve as a biosensor for polyphenols. As the proof of concept, the response of the enzymatic biosensors to polyphenol catechin has been presented delineating different mechanisms of horseradish peroxidase and laccase operation. The proposed sensors are low cost, reliable, and scalable.

References

- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigoreva and A.A. Firsov, Science, 2004, 306, 666-669.

- A.K. Geim and K.S. Novoselov, Nature Mater., 2007, 6, 183-191.

- M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng and H.L. Poh, Trends Anal. Chem., 2010, 29, 954-965.

- M. Hepel, in Encyclopedia of Surface and Colloid Science; ed. P. Somasundaran; Taylor and Francis: New York, 2014, pp. 1-15 (in press).

- C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang and H.M. Cheng, Adv. Mater., 2009, 21, 3007-3011.

- H.Q. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D.Li, Adv. Mater., 2008, 20, 3557-3561.

- J.J. Liu, X.L. Zhang, Z.X. Cong, Z.T. Chen, H.H. Yang and G.N. Chen, Nanoscale, 2013, 5, 1810-1815.

- Y. Wang, Y.M. Li and L.H. Tang, Electrochem. Commun., 2009, 11, 889-892.

- L. Tan, K.G. Zhou, Y.H. Zhang and e. al., Electrochem. Commun., 2010, 12, 557-560.

- X.P. Chen, H.Z. Ye and W.Z. Wang, Electroanalysis, 2010, 20, 2347-2352.

- P. Wu, S.A. Qian and Y.J. Hua, Electrochim Acta, 2010, 55, 8606-8614.

- J.W. Wang, S.L. Yang, D.Y. Guo, P. Yu, D. Li, J.S. Ye and L.Q. Mao, Electrochem. Commun., 2009, 11, 1892-1895.

- W.J. Lin, C.S. Liao, J.H. Jhang and Y.C. Tsai, Electrochem. Commun., 2009, 11, 2153-2156.

- B. Hong and Q. Cheng, Adv. Chem. Engng. Sci., 2012, 2, 453-460.

- J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei and P.E. Sheehan, Nano Lett., 2008, 8, 3137-3140.

- H. Gong, M. Sun, R. Fan and L. Qian, Microchim. Acta, 2013, 180, 295-301.

- X.W. Liu, Z.J. Yao, Y.F. Wang and X.W. Wei, Colloids Surf. B, 2010, 81, 508-512.

- Y. Zhang, X.M. Sun, L.Z. Zhu, H.B. Shen and N.Q. Jia, Electrochim. Acta, 2011, 56, 1239-1245.

- D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 2008, 3, 101-105.

- K. Mikhoyan, A. Contryman, J. Silcox, D. Steward, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, Nano Lett., 2009, 9, 1058-1063.

- D. Kosynkin, A. Higginbotham, A. Sinitskii, J. Lomeda, A. Dimiev, K. Price and J. Tour, Nature, 2009, 458, 872-876.

- G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol., 2008, 3, 270-274.

- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 2007, 45, 1558-1565.

- N.A. Kotov, I. Dekany and J.H. Fendler, Adv. Mater., 1996, 8, 637-641.

- D. Yang, A. Velamakanni, G. Bezoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Junk, D.A. Field, C.A. Ventrice and R.S. Ruoff, Carbon, 2009, 47, 145-152.

- Y. Si and E.T. Samulski, Nano Lett., 2008, 8, 1679-1682.

- H.J. Shin, K.K. Kim and A. Benayad, Adv. Functional Materials, 2009, 19, 1987-1992.

- G.K. Ramesha and S. Sampath, J. Phys. Chem. C, 2009, 113, 7985-7989.

- Z. Wang, X. Zhou and J. Zhang, J. Phys. Chem. Lett., 2009, 113, 14071-14075.

- E. Jin, X.F. Lu, L.L. Cui, D.M. Chao and C. Wang, Electrochim. Acta, 2010, 55, 7230-7234.

- M. Hepel, M. Stobiecka, J. Peachey and J. Miller, Mutation Res., 2012, 735, 1-11.

- R. Solna and P. Skladal, Electroanalysis, 2005, 17, 2137-2146.

- J. Zeravik, K. Lacina, M. Jilek, J. Vlcek and P. Skladal, Microchim. Acta, 2010, 170, 251-256.

- J. Zeravik, A. Hlavacek, K. Lacina and P. Skladal, Electroanalysis, 2009, 21, 2509-2520.

- K. Itaya, N. Shoji and I. Uchida, J. Am. Chem. Soc., 1984, 106, 3423-3429.

- A.A. Karyakin, E.E. Karyakina and L. Gorton, J. Electroanal. Chem., 1998, 456, 97-104.

- A.A. Karyakin, O.V. Gitelmacher and E.E. Karyakina, Anal. Chem., 1995, 67, 2419-2423.

- S.A. Jaffari and A.P.F. Turner, Biosens. Bioelectron., 1997, 12, 1-9.

- F. Ricci, A. Amine, G. Palleschi and D. Moscone, Biosens. Bioelectron., 2003, 18, 165-174.

- J.D. Qiu, H.Z. Peng, R.P. Liang, J. Li and X.H. Xia, Langmuir, 2007, 23, 2133-2137.

- Z. Chu, Y. Zhang, X. Dong, W. Jin, N. Xu and B. Tieke, J. Mater. Chem., 2010, 20, 7815–7820.

- C. Lete, S. Lupu, M. Marin and M. Badea, Rev. Roum. Chim.,, 2010, 55, 335-340.

- P. Salazar, M. Martín and R. Roche, Electrochim. Acta, 2010, 55, 6476-6484.

- A.L. Sanford, S.W. Morton, K.L. Whitehouse, H.M. Oara, L.Z. Lugo-Morales, J.G. Roberts and L.A. Sombers, Anal. Chem., 2010, 82, 5205-5210.

- J.D. Qiu, M. Xiong, R.P. Liang, J. Zhang and X.H. Xia, J. Nanosci. Nanotechnol., 2008, 8, 4453-4460.

- L.Y. Cao, Y.L. Liu, B.H. Zhang and L.H. Lu, ACS Appl. Mater. Interfaces, 2010, 2, 2339-2346.

- Y.Y. Jiang, X.D. Zhang, C.S. Shan, S.H. Hua, X.Q. Zhang, X.X. Bai, L. Dan and L. Niu, Talanta, 2011, 85, 76-81.

- M.T. Sulak, E. Erhan, B. Keskinler, F. Yılmaz and A. Celik, Sensor Lett., 2010, 8, 262-267.

- M.T. Sulak, E. Erhan and B. Keskinler, Sensors Materials, 2012, 24, 141-152.

- J.A. Rather and K.D. Wael, Sensors Actuators B, 2012, 171-172, 907-915.

- J.A. Rather and K.D. Wael, Sensors Actuators B, 2013, 176, 110-117.

- J.A. Rather, P. Debnath and K.D. Wael, Electroanalysis, 2013, 25, 2145-2150.

- A. Qurashi, J.A. Rather, K.D. Wael, B. Merzougui, N. Tabet and M. Faiz, Analyst, 2013, 138, 4764-4768.

- J.A. Rather, S. Pilehvar and K.D. Wael, Sensors Actuators B, 2014, 190, 612-620.

- W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.

- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 2010, 4, 4806-4814.

- A.A. Karyakin, Electroanalysis, 2001, 13, 813–819.

- M. Stobiecka and M. Hepel, Biosens. Bioelectron., 2011, 26, 3524-3530

Downloads

Published

2014-06-14

Issue

Section

Sensors/Graphene