Design of Novel Biosensors for Determination of Phenolic Compounds using Catalyst-Loaded Reduced Graphene Oxide Electrodes
DOI:
https://doi.org/10.13171/mjc.3.3.2014.14.06.12Abstract
Facile and inexpensive method for designing high performance sensors for H2O2 and polyphenols has been developed. The proposed sensors are based on high electrocatalytic activity of Prussian Blue (PB) nanoparticles deposited in situ on high surface area graphene nanosheet-based thin films on a graphite electrode. The exfoliated graphene nanosheets were formed by attaching graphene oxide to the electrode surface followed by their electrochemical reduction to obtain the reduced graphene oxide (rGO), providing high surface area and excellent current-carrying capabilities to the sensory film. The PB catalyst nanoparticles were deposited electrochemically on rGO. This procedure is very time efficient as it reduces the time of sensor preparation from 3 days (according to recent literature) to several hours. The proposed method provides simple means to obtain highly reliable and stable sensory films. The sensor shows a dynamic range of 1–500 μM H2O2 and a rapid response of 5 s to reach 95% of a steady-state response. When combined with immobilized enzymes (horseradish peroxidase or laccase oxidase), it can serve as a biosensor for polyphenols. As the proof of concept, the response of the enzymatic biosensors to polyphenol catechin has been presented delineating different mechanisms of horseradish peroxidase and laccase operation. The proposed sensors are low cost, reliable, and scalable.References
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigoreva and A.A. Firsov, Science, 2004, 306, 666-669.
- A.K. Geim and K.S. Novoselov, Nature Mater., 2007, 6, 183-191.
- M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng and H.L. Poh, Trends Anal. Chem., 2010, 29, 954-965.
- M. Hepel, in Encyclopedia of Surface and Colloid Science; ed. P. Somasundaran; Taylor and Francis: New York, 2014, pp. 1-15 (in press).
- C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang and H.M. Cheng, Adv. Mater., 2009, 21, 3007-3011.
- H.Q. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D.Li, Adv. Mater., 2008, 20, 3557-3561.
- J.J. Liu, X.L. Zhang, Z.X. Cong, Z.T. Chen, H.H. Yang and G.N. Chen, Nanoscale, 2013, 5, 1810-1815.
- Y. Wang, Y.M. Li and L.H. Tang, Electrochem. Commun., 2009, 11, 889-892.
- L. Tan, K.G. Zhou, Y.H. Zhang and e. al., Electrochem. Commun., 2010, 12, 557-560.
- X.P. Chen, H.Z. Ye and W.Z. Wang, Electroanalysis, 2010, 20, 2347-2352.
- P. Wu, S.A. Qian and Y.J. Hua, Electrochim Acta, 2010, 55, 8606-8614.
- J.W. Wang, S.L. Yang, D.Y. Guo, P. Yu, D. Li, J.S. Ye and L.Q. Mao, Electrochem. Commun., 2009, 11, 1892-1895.
- W.J. Lin, C.S. Liao, J.H. Jhang and Y.C. Tsai, Electrochem. Commun., 2009, 11, 2153-2156.
- B. Hong and Q. Cheng, Adv. Chem. Engng. Sci., 2012, 2, 453-460.
- J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei and P.E. Sheehan, Nano Lett., 2008, 8, 3137-3140.
- H. Gong, M. Sun, R. Fan and L. Qian, Microchim. Acta, 2013, 180, 295-301.
- X.W. Liu, Z.J. Yao, Y.F. Wang and X.W. Wei, Colloids Surf. B, 2010, 81, 508-512.
- Y. Zhang, X.M. Sun, L.Z. Zhu, H.B. Shen and N.Q. Jia, Electrochim. Acta, 2011, 56, 1239-1245.
- D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 2008, 3, 101-105.
- K. Mikhoyan, A. Contryman, J. Silcox, D. Steward, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, Nano Lett., 2009, 9, 1058-1063.
- D. Kosynkin, A. Higginbotham, A. Sinitskii, J. Lomeda, A. Dimiev, K. Price and J. Tour, Nature, 2009, 458, 872-876.
- G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol., 2008, 3, 270-274.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 2007, 45, 1558-1565.
- N.A. Kotov, I. Dekany and J.H. Fendler, Adv. Mater., 1996, 8, 637-641.
- D. Yang, A. Velamakanni, G. Bezoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Junk, D.A. Field, C.A. Ventrice and R.S. Ruoff, Carbon, 2009, 47, 145-152.
- Y. Si and E.T. Samulski, Nano Lett., 2008, 8, 1679-1682.
- H.J. Shin, K.K. Kim and A. Benayad, Adv. Functional Materials, 2009, 19, 1987-1992.
- G.K. Ramesha and S. Sampath, J. Phys. Chem. C, 2009, 113, 7985-7989.
- Z. Wang, X. Zhou and J. Zhang, J. Phys. Chem. Lett., 2009, 113, 14071-14075.
- E. Jin, X.F. Lu, L.L. Cui, D.M. Chao and C. Wang, Electrochim. Acta, 2010, 55, 7230-7234.
- M. Hepel, M. Stobiecka, J. Peachey and J. Miller, Mutation Res., 2012, 735, 1-11.
- R. Solna and P. Skladal, Electroanalysis, 2005, 17, 2137-2146.
- J. Zeravik, K. Lacina, M. Jilek, J. Vlcek and P. Skladal, Microchim. Acta, 2010, 170, 251-256.
- J. Zeravik, A. Hlavacek, K. Lacina and P. Skladal, Electroanalysis, 2009, 21, 2509-2520.
- K. Itaya, N. Shoji and I. Uchida, J. Am. Chem. Soc., 1984, 106, 3423-3429.
- A.A. Karyakin, E.E. Karyakina and L. Gorton, J. Electroanal. Chem., 1998, 456, 97-104.
- A.A. Karyakin, O.V. Gitelmacher and E.E. Karyakina, Anal. Chem., 1995, 67, 2419-2423.
- S.A. Jaffari and A.P.F. Turner, Biosens. Bioelectron., 1997, 12, 1-9.
- F. Ricci, A. Amine, G. Palleschi and D. Moscone, Biosens. Bioelectron., 2003, 18, 165-174.
- J.D. Qiu, H.Z. Peng, R.P. Liang, J. Li and X.H. Xia, Langmuir, 2007, 23, 2133-2137.
- Z. Chu, Y. Zhang, X. Dong, W. Jin, N. Xu and B. Tieke, J. Mater. Chem., 2010, 20, 7815–7820.
- C. Lete, S. Lupu, M. Marin and M. Badea, Rev. Roum. Chim.,, 2010, 55, 335-340.
- P. Salazar, M. MartÃn and R. Roche, Electrochim. Acta, 2010, 55, 6476-6484.
- A.L. Sanford, S.W. Morton, K.L. Whitehouse, H.M. Oara, L.Z. Lugo-Morales, J.G. Roberts and L.A. Sombers, Anal. Chem., 2010, 82, 5205-5210.
- J.D. Qiu, M. Xiong, R.P. Liang, J. Zhang and X.H. Xia, J. Nanosci. Nanotechnol., 2008, 8, 4453-4460.
- L.Y. Cao, Y.L. Liu, B.H. Zhang and L.H. Lu, ACS Appl. Mater. Interfaces, 2010, 2, 2339-2346.
- Y.Y. Jiang, X.D. Zhang, C.S. Shan, S.H. Hua, X.Q. Zhang, X.X. Bai, L. Dan and L. Niu, Talanta, 2011, 85, 76-81.
- M.T. Sulak, E. Erhan, B. Keskinler, F. Yılmaz and A. Celik, Sensor Lett., 2010, 8, 262-267.
- M.T. Sulak, E. Erhan and B. Keskinler, Sensors Materials, 2012, 24, 141-152.
- J.A. Rather and K.D. Wael, Sensors Actuators B, 2012, 171-172, 907-915.
- J.A. Rather and K.D. Wael, Sensors Actuators B, 2013, 176, 110-117.
- J.A. Rather, P. Debnath and K.D. Wael, Electroanalysis, 2013, 25, 2145-2150.
- A. Qurashi, J.A. Rather, K.D. Wael, B. Merzougui, N. Tabet and M. Faiz, Analyst, 2013, 138, 4764-4768.
- J.A. Rather, S. Pilehvar and K.D. Wael, Sensors Actuators B, 2014, 190, 612-620.
- W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 2010, 4, 4806-4814.
- A.A. Karyakin, Electroanalysis, 2001, 13, 813–819.
- M. Stobiecka and M. Hepel, Biosens. Bioelectron., 2011, 26, 3524-3530
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).