Evaluation of production electrocatalyst for hydrogen electrolysis from water

Authors

  • Miguel A. Gutierrez O Universidad de los Andes, Carrera 1 No 18 A 10, Departamento de Ingeniería Química, Bogotá (Colombia)
  • Nestor Y. Rojas Universidad Nacional de Colombia, Carrera 30 No 43 Departamento de Ingeniería Bogotá, (Colombia)
  • Liliana Giraldo Universidad Nacional de Colombia, Carrera 30 No 43- 00, Facultad de Ciencias, Departamento de Química. Carrera 30 No. 43-00 Bogotá, (Colombia)
  • Juan Carlos Moreno-Pirajan Universidad de los Andes, Carrera 1 No 18 A 10, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Sólidos Porosos y Calorimetría, Bogotá, Colombia.

Abstract

This paper analysed three specific ternary alloys, electrodeposited on the cathode and the anode of alkaline water electrolysis, called electrocatalysts. The analysis was done by monitoring the hydrogen production (mL/min) from the electrolysis of water at different current densities (mA/cm2). Three different electrocatalysts were analysed, at the cathode (Ni, Pt and Mo) and the anode (Ni, Co and Cr). The difference between the cathode electrocatalyst was given by the composition of the nickel (54.4 wt% and 74.4 wt%), which represented a change in the structure of the phases in the electrode surface. No significant difference was found between the two different electrocatalysts at the cathode, despite the higher content of nickel and greater influence on hydrogen production. A 30% increase in the production of hydrogen with respect to the control was reached, the presence of the electrocatalyst at the anode and presence of nickel in the cathode electrocatalyst.

References

- T. Pregger, D. Graf, W. Krewitt, C. Sattler, M. Roeb, S. Möller, Int. Jour. of Hydro.Ener., 2009, 34(10), 4256-4267

- N. Ozalp, M. Epstein, A. Kogan, J. of Cleaner Prod., 2010, 18 (9), 900-907

- V. G. Dovì, F. Friedler, D. Huisingh, J. J. Klemes, J. of Cleaner Prod., 2009, 17(10), 889-895

- P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo, C. EtiévantHu, Int. Jour. Hydr. Energy, 2011, 36 (6), 4134-4142

- M. K. Baboli, M. J. Kermani, Electrochimica Acta, 2008, 53 (26) 7644-7654

- C. Decaux, R. Ngameni, D. Solas, S. Grigoriev, P. Millet, Int. Jour. of Hydr. Energy, 2010, 35 (10), 4883-4892

- X. Li, Z. Zhu, R. Marco, J. Bradley, A. Dicks, Energy Fuels, 2009, 23 (7), 3721–3731

- A. R. Naghash, Z. Xu, T.H. Etsell, Chem. Mater., 2005, 17 (4), 815–821

- Z. He, J. Chen, D. Liu, H. Zhou, Y.Kuang, Diamond and Related Materials, 2004, 13(10), 1764-1770.

- A. Damian, S. Omanovic, Journal of Power Sources, 2006, 158 (1), 464-476.

- A. F. Gulla, L. Gancs, R. J. Allen, S. Mukerjee, Applied Catalysis A: General, 2007 (326), 227–235

- W. Hu, International Journal of Hydrogen Energy, 2000, (25(2), 111-118

- Z.You-Zhou, N. Tian, J. T. Li, I. Broadwell, S. G. Sun, Chem. Soc. Rev., 2011, (40), 4167-4185

- W. M. Jin, J. H. Shin, C. Y. Cho, J. H. Kang, J. H. Park, J. H. Moon, ACS Appl. Mater. Interfaces, 2010, 2 (11), 2970–2973

- T.S. Olson, P. Atanassov, D.A. Brevnov, J. Phys. Chem. B, 2005, 109 (3), 1243–1250

- T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota, K. Domen, J. Phys. Chem. C, 2009, 113 (51), 21458–21466

- H. Hu, Y. Fan, H. Lu, Hydrogen Energy, 2010, 35, 3227-3233.

Downloads

Published

2011-07-12

Issue

Section

Electrochemistry