Study of the photocatalytic effect of the Ti-doped hydroxyapatite in the degradation of methylene blue solution

Authors

  • Anas Salhi Laboratory of Water and Environment, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PO. Box 20, El Jadida 24000, Morocco.
  • Abdelatif Aarfane Laboratory of Water and Environment, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PO. Box 20, El Jadida 24000, Morocco.
  • Soufiane Tahiri Laboratory of Water and Environment, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PO. Box 20, El Jadida 24000, Morocco.
  • Layachi Khamliche Faculty of Sciences of El Jadida
  • Mohammed Bensitel Faculty of Sciences of El Jadida
  • Fouad Bentiss Faculty of Sciences of El Jadida
  • Mohammed El Krati Laboratory of Water and Environment, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, PO. Box 20, El Jadida 24000, Morocco.

DOI:

https://doi.org/10.13171/mjc.4.1.2015.16.01.20.30/salhi

Abstract

Organic dyes and colouring textile agents are persistent pollutant materials that are difficult to decompose by microbiological treatment processes. Their oxidation through photocatalysis is an alternative way to prevent contamination of the environment. In this work, calcium deficient hydroxyapatite (HAP) was synthesized and doped with different amounts of titanium. The performance capability of prepared catalyst to degrade methylene blue dye (MB) in aqueous heterogeneous solutions has been demonstrated. The main parameters which govern the photocatalytic treatment efficiency, such as titanium amount in HAP, initial concentration of MB, amount of the catalyst added to solution, UV-irradiation period and bubbling oxygen have been investigated. Photodegradation of  MB is found to be effective with HAP/Ti 11% in oxygenated medium. However, pH has no significant effect on the yield of discoloration. 

References

S. Bouafia, Degradation of textile dyes by advanced oxidation processes based on fenton reaction, application to the depollution of industrial effluents. Thèse de l’Université de Paris-Est (France) et de l’Université Saâd Dahlab (Algérie) 2010.

D. Brown, P. Laboureur, Chemosphere 1983, 12, 397–404.

J-S. Chang, Y-C. Lin, Biotechnology Progress 2000, 16, 979–985.

T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresource Technology 2001, 77, 247–255.

S.A. Figueiredo, J.M. Loureiro, R.A. Boaventura, Water Research 2005, 39, 4142–4152.

H.P. Boehm, Chemical identification of surface groups. In Advances in Catalysis 16, New York: Academic Press 1966, p.179–274.

S.D. Lambert, N.J.D. Graham, C.J. Sollars, G.D. Fowler, Water Sci. Technol. 1997, 36, 173–180.

S.H. Lin, J. Chem. Technol. Biotechnol. 1993, 57, 387–391.

K.R. Ramakrishna, T. Viraraghavan, J.Water Sci. Technol. 1997, 36, 189–196.

J.S. Taylor, E.P. Jacobs, Reverse osmosis and nanoï¬ltration, In Water Treatment Membrane Processes, eds J. Mallevialle, P. E. Odendaal and M. R. Wiesner, pp. 9.1–9.70. McGraw Hill, New York, NY, 1996.

S. Papic, N. Koprivanac, A.L.C. Bozic, Color. Technol. 2000, 116, 352–358.

P. Cooper, Color in dye house effluent, in: Society of dyes and colourists, Alden Press, Oxford 1995, p. 9.

E.J. Weber, R.L. Adams, Environ. Sci. Technol. 1995, 29, 1163–1170.

W.Z. Tang, R.Z. Chen, Chemosphere, 1996, 32, 947–958.

R. Liu, H. Tang, J. Wat. Res. 2000, 34, 4029–4035.

N. Deng, F. Luo, F. Wu, M. Xiao, X. Wu, J. Wat. Res. 2000, 34, 2408–2411.

S. Hammami, Etude de dégradation des colorants de textile par les procédés d'oxydation avancée. Application à la dépollution des rejets industriels, Doctorat de l’Université Paris-Est et de l’Université de Tunis El Manar 2008.

K. Kestioglu, T. Yonar, N. Azbar, Process Biochemistry 2005, 40, 2409–2416.

T. Yonar, Decolorisation of textile dyeing effluents using advanced oxidation processes, advances in treating textile effluent, Prof. Peter Hauser (Ed.), ISBN: 978-953-307-704-8, InTech. 2011.

C. Lamonier, J.F. Lamonier, B. Aellach, A. Ezzamarty, J. Leglise. J. Catalysis Today 2011, 164, 124–130.

A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, S. Rafqah, N. Benzidia, M. El Krati. J. Mater. Environ. Sci. 2014, 5, 1573–1582.

W. Chu, W.K. Choy, T.Y. So, Journal of Hazardous Materials 2007, 141, 86–91.

S. Rafqah, P. Wong-Wah-Whung, C. Forano, M. Sarakha, Journal of Photochemistry and Photobiology A Chemistry, 2008, 199, 297–302.

H. Lanhua, P.M. Flanders, P.L. Miller, T.J. Strathmann, J. Wat. Res. 2007, 41, 2612–2626.

K. Soutsas, V. Karayannis, L. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Desalination 2010, 250, 345–350.

M. Muruganandham, M. Swaminathan, Sol. Energy Mater. Sol. Cells, 2004, 81, 439–457.

D. Chen, J. Zhong, Y. Wang, Fine Chem. 2002, 1, 55–58.

H. Zhao, S. Xu, J. Zhong, X. Bao, Catalysis Today 2004, 93–95, 857–861.

S. Fassi, K. Djebbar, T. Sehili, J. Mater. Environ. Sci. 2014, 5, 1093–1098.

S. Sakthivel, B. Neppolian, B. Arabindoo, M. Palanichamy, V. Murugesan, Journal of Scientific & Industrial Research 2000, 59, 556–562.

F. Zaviska, P. Drogui, G. Mercier, J .F. Blais, Rev. Sci. Eau. 2009, 22, 535–564.

Downloads

Published

2015-03-14

Issue

Section

Environmental Chemistry