Insight into the interaction between α-lapachone and bovine serum albumin employing a spectroscopic and computational approach
DOI:
https://doi.org/10.13171/mjc..5.1/0160113/ferreiraAbstract
Serum albumin is the most abundant protein in blood plasma; among its functions is the transport of a high variety of drugs in the body. Quinones show several biological and pharmacological activities, such as anti-malarial, antitumor, anti-microbial, anti-inflammatory and anti-parasitic. We report fluorescence and circular dichroism (CD) spectroscopic studies to try to understand the interaction process between α-lapachone (α-LAP) and bovine serum albumin (BSA). Studies using computational methods, such as molecular docking, were performed to identify the main cavity in which this interaction occurs as well as the type of intermolecular interactions between the amino acid residues from albumin and the ligand. The BSA fluorescence quenching by added α-LAP is a static process, indicating an initial association BSA: α-LAP. The Ka and Kb values for the interaction BSA: α-LAP are in the range 105-104 L∙mol-1, indicating a strong binding between these two species. CD data show that there is no significant perturbation on the secondary structure of the protein with binding. The negative ΔGo values are consistent with spontaneous binding occurring endothermically (ΔHo = 127 kJ∙mol-1), and possibly driven by hydrophobic factors (ΔSo = 0.526 kJ∙mol-1∙s-1). The number of binding sites (n) indicates the existence of just one main binding site in BSA for α-LAP, with molecular docking results showing that it binds preferentially to the albumin in the domain IIA, where the Trp-212 residue is located. The ligand interacts via hydrogen bond with Arg-259 and Tyr-149 residues and via T-stacking with the fluorophore Trp-212 residue.References
T.L.G. Lemos, F.J.Q. Monte, A.K.L. Santos, A.M. Fonseca, H.S. Santos, M.F. Oliveira, S.M.O. Costa, O.D.L. Pessoa, R. Braz-Filho, Nat. Prod. Res. 2007, 21, 529-550.
L. F. Fieser, E. Berliner, F. Bondhus, F. C. Chang, W. G. Dauben, M. G. Ettlinger, G. Fawaz, M. Fields, M. Fieser, C. Heidelberger, H. Heymann, A. M. Seligman, W. R. Vaughan, A. G. Wilson, E. Wilson, M.I. Wu, M. T. Leffler, K. E. Hamlin, R. J. Hathaway, E. J. Matson, E. E. Moore, M. B. Moore, R. T. Rapala, H. E. Zaugg, J. Am. Chem. Soc. 1948, 70, 3151-3162.
A.R. Burnett, R.H. Thomson, J. Chem. Soc. C, 1967, 2100-2104.
H. Hussain, K. Krohn, V.U. Ahmad, G.A. Miana, I.R. Green, ARKIVOC, 2007, II, 145-171.
E. Pérez-Sacau, R.G. Diaz-Peñate, A. Estévez-Braun, A.G. Ravelo, J.M. GarcÃa-Castellano, L. Pardo, M. Campillo, J. Med. Chem. 2007, 50, 696-706.
A. S. Cunha, E. L. S. Lima, A. C. Pinto, A. Esteves-Souza,. A. Echevarria, C. A. Camara, M. D. Vargas, J. C. Torres, J. Braz. Chem. Soc. 2006, 17, 439-442.
E. N. Silva Júnior, M. C. B. V. de Souza, A. V. Pinto, M. C. F. R. Pinto, M. O. F. Goulart, F. W. A. Barros, C. Pessoa, L. V. Costa-Lotufo, R. C. Montenegro, M. O. de Moraes, V. F. Ferreira, Bioorg. Med. Chem. 2007, 15, 7035-7041.
Kim, S. O.; Kwon, J. I.; Jeong, Y. K.; Kim, G. Y.; Kim, N. D.; Choi, Y. H.; Biosci. Biotechnol. Biochem. 2007, 71, 2169-2174.
K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 2012, 52, 174–182.
K. Taguchi, V.T.G. Chuang, T. Maruyama, M. Otagiri, J. Pharm. Sci. 2012, 101, 3033-3046.
B. K. Paul, A. Samanta, N. Guchhait, J. Phys. Chem. B, 2010, 114, 6183–6196.
D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, T. Y. Miller, Science, 1989, 244, 1195-1198.
S. Sugio, S. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein Eng. Des. Sel. 1999, 12, 439-446.
A. Bujacz, Acta Cryst. 2012, D68, 1278-1289.
J.R. Lakowicz. Principles of Fluorescence Spectroscopy, 1st ed.; Springer New York, U.S.A., 2006; pp. 923–928.
J. Liu, J.N. Tian, J. Zhang, Z. Hu, X. Chen, Anal Bioanal Chem. 2003, 376, 864-867.
J. Tian, X. Liu, Y. Zhao, S. Zhao, J. Luminesc. 2007, 22, 446-454.
M.R. Eftink, C.A. Ghiron, Anal Bioanal Chem. 1981, 114, 199-227.
D. Brune, S. Kim, Biophysics, 1993, 90, 3835-3839.
M.R. Eftink. Fluorescence Quenching Reactions: Probing Biological Macromolecular Structures. In: Biophysical Biochemical Aspects of Fluorescence Spectroscopy, 1st ed.; T.G. Dgurvy,; Plenum Press, New York, U.S.A., 1991, Vol. 1, pp. 1-41.
A. Satheshkumar, K.P. Elango, Spectrochim. Acta Mol. Biomol. 2014, 130, 337-343.
O. A. Chaves, A. P. O. Amorim, L. H. E. Castro, C. M. R. Sant’Anna, M. C. C. de Oliveira, D. Cesarin-Sobrinho, J. C. Netto-Ferreira, A. B. B. Ferreira, Molecules. 2015, 20, 19526-19539.
I.E. Borissevitch, T.T. Tominaga, H. Imasato, M. Tabak, J. Luminesc. 1996, 69, 65–76.
W. He, Y. Li, J. Tian, H. Liu, Z. Hu, X. Chen, J. Photochem. Photobiol. A: Chem. 2005, 174, 53-61.
P. D. Ross, S. Subramanian, Biochemistry 1981, 20, 3096-3102.
Z. Cheng, R. Liu, X. Jiang, Spectrochim. Acta Mol. Biomol. 2013, 115, 92-105.
J. Li, J. Li, Y. Jiao, C. Dong, Spectrochim. Acta Mol. Biomol. 2014, 118, 48-54.
S. Y. Venyaminov, J. T. Yang. In Determination of protein secondary structure. Circular dichroism and the conformational analysis of biomolecules, ed. by G. D. Fasman, Plenum Press, New York, EUA, 1996, pp. 69-80.
P. Yang, F. Gao. The principle of bioinorganic chemistry, Science Press, Beijing, 2002, pp. 349-360.
W.Y. He, Y. Li, H. Z. Si, Y. M. Dong, F. L. Sheng, X. J. Yao, Z. D. Hu, J. Photochem. Photobiol. A: Chem. 2006, 182, 158-165.
A. Varlan, N. Hillebrand, Mol. 2010, 15, 3905-3919.
Y. Yue, Y. Zhang, J. Qin, X. Chen, J. Mol. Struc. 2008, 888, 25-30.
Y. Yue, Y. Zhang, Y. Li, J. Zhu, J. Qin, X. Chen, J. Luminesc. 2008, 128, 513-516.
B.K. Paul, A. Samanta, N. Guchhait, J. Phys. Chem. B, 2010, 114, 6183–6196.
M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari, P. Ascenzi, IUBMB Life 2005, 57, 787-796.
M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902-3909.
C. A. C. Ferreira, V. F. Ferreira, A. V. Pinto, R. S. C. Lopes, M. C. R. Pinto, A. J. R. Silva, An. Acad. Bras. Ci. 1987, 59, 5-8.
G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor, Journal of Molecular Biology 1997, 267, 727-748.
O. Korb, T. Stützle, T.E. Exner, J. Chem. Inf. Model. 2009, 49, 84-96.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).