Synthesis and Molecular modeling of some new chalcones derived from coumarine as CDC25 phosphatases inhibitors

Authors

  • Delel Dridi SRSMC Université de Lorraine Laboratoire de Synthèse Organique, Faculté des Sciences de Bizerte,Bizerte-Tunisie
  • Ahmed Bakr Abdelwahab SRSMC Université de Lorraine
  • Emilie Bana SRSMC Université de Lorraine
  • Patrick Chaimbault SRSMC Université de Lorraine
  • Faouzi Meganem Laboratoire de Synthèse Organique, Faculté des Sciences de Bizerte, Bizerte-Tunisie
  • Gilbert Kirsch SRSMC Université de Lorraine

Abstract

New chalcones derived from coumarines were synthesized and tested as CDC25 phosphatase inhibitors. Molecular modeling of these new compounds was also presented in aim to study the mode of compounds orientation within CDC25 A and B. The reversibility of compounds 3, 4 and 5 was confirmed by application of MALDI–TOFMS technique.

References

R Boutros, V Lobjois, B Ducommun; CDC25 phosphatases in cancer cells: key players? Good targets? ; Nat Rev Cancer; 2007;7(7);495-507.

B Baratte, L Meijer, K Galaktionov, D Beach; Screening for antimitotic compounds using the cdc25 tyrosine phosphatase, an activator of the mitosis-inducing p34cdc2/cyclin Bcdc13 protein kinase; Anticancer Res; 1992;12(3);873-880.

SW Ham, BI Carr; Cell Division Cycle 25 (Cdc25) Phosphatase Inhibitors as Antitumor Agents; Drug Des Rev - Online; 2004;1(2);10.

P Kaldis; The cdk-activating kinase (CAK): from yeast to mammals; Cell Mol Life Sci C. 1999;55(2);284-296.

B Bugler et al. Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression; Mol Cancer Ther; 2006;5(6);1446-1451.

MO Contour-Galcera, A Sidhu, G Prévost, D Bigg, B Ducommun; What’s new on CDC25 phosphatase inhibitors; Pharmacol Ther; 2007;115(1);1-12.

A Lavecchia., C Di Giovanni, E Novellino; CDC25 Phosphatase Inhibitors: An Update. Mini Rev Med Chem; 2012;12(1);62-73.

BP Bandgar, SA Patil, BL Korbad, SH Nile, CN Khobragade; Synthesis and biological evaluation of beta-chloro vinyl chalcones as inhibitors of TNF-alpha and IL-6 with antimicrobial activity; Eur J Med Chem; 2010;45(6);2629-2633.

Singh P, Anand A, Kumar V; Recent developments in biological activities of chalcones: A mini review; Eur J Med Chem; 2014;85C;758-777.

DK Mahapatra, SK Bharti, V Asati; Anti-cancer chalcones: Structural and molecular target perspectives; Eur J Med Chem; 2015;98; 69-114.

J Zhang, F-J Ji, Y Gu, X-Y Zhang, S-X Qiao; Chalcones derivatives as potent Cell division cycle 25B phosphatase inhibitors; Pharmacol Rep; 2014;66(3);515-519.

ME Riveiro, et al; Coumarins: old compounds with novel promising therapeutic perspectives; Curr Med Chem; 2010;17;1325-1338.

A Thakur, R Singla, V Jaitak; Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies; Eur J Med Chem; 2015;101;476-495.

F Borges, F Roleira, N Milhazes, L Santana, E Uriarte; Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity; Curr Med Chem.;2005; 12(8);887-916.

A Carotti, et al; Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies; Bioorganic Med Chem Lett; 2002;12(24);3551-3555.

S Sandhu, Y Bansal, O Silakari, G Bansal; Coumarin hybrids as novel therapeutic agents; Bioorg Med Chem; 2014;22(15);3806-3814.

E Bana, et al.; A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death; Mol Carcinog; 2015;54(3); 229-241.

S Valente, et al.; Reactivity of 4-Vinyl-2 H -1-benzopyran-2-ones in Diels-Alder Cycloaddition Reactions: Access to Coumarin-Based Polycycles with Cdc25 Phosphatase-Inhibiting Activity; European J Org Chem;2013(14):2869-2877.

S Valente, E Bana, E Viry, D Bagrel, G Kirsch; Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases; Bioorg Med Chem Lett. 2010;20(19):5827-5830.

KV Sashidhara, A Kumar, Kumar M, Sarkar J, Sinha S; Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents; Bioorg Med Chem Lett; 2010;20(24);7205-7211.

A Wurtz.; Ueber einen Aldehyd-Alkohol; J für Prakt Chemie; 1872;5(1);457-464.

T Hirai, H Togo; Preparation and Synthetic Use of Polymer-Supported Acetoacetate Reagent; Synthesis (Stuttg); 2005;(16);2664-2668.

Å StarÄević, et al; Synthesis and biological evaluation of (6- and 7-Phenyl) coumarin derivatives as selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1; J Med Chem; 2011;54(1);248-261.

Ra Finnegan, B Gilbert, Ej Eisenbraun, C Djerassi; Naturally Occurring Oxygen Heterocyclics. VIII. 1 Synthesis of Some Coumarins Related to Mammein 2; J Org Chem; 1960;25(12);2169-2173.

A I Vedernikov, S P Gromov; Convenient Method for the Preparation of Crown Ether Cinnamaldehydes; Synthesis (Stuttg);2001(06);0889-0892.

G Wittig, U Schollkopf; Ãœber Triphenyl-phosphinmethylene als olefinbildende Reagenzien (I. Mitteil.); Chem Ber.;1954;87(9);1318-1330.

A a Wube, et al.; Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones; Bioorg Med Chem; 2011;19(1);567-579.

E Sibille, et al. Development of a matrix-assisted laser desorption / ionization – mass spectrometry screening test to evidence reversible and irreversible inhibitors of CDC25 phosphatases; Anal Biochem; 2012;430(1);83-91.

H Park,et al.; Discovery of Novel and Potent Cdc25 Phosphatase Inhibitors Based on the Structure-Based De Novo Design; Bull Korean Chem Soc; 2009;30(6);1313-1316.

J Rudolph.; Cdc25 phosphatases: structure, specificity, and mechanism; Biochemistry. 2007;46(12);3595-3604.

J Rudolph.; Targeting the Neighbor’s Pool.; Mol Pharmacol; 2004;66(4):780-782.

PDB code:1QB0, http://www.rcsb.org/pdb/Welcome.do.

O Trott, AJ Olson; AutoDock Vina; J Comput Chem; 2010;31;445-461.

J Sohn, et al. Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate; Biochemistry; 2005;44(50);16563-16573.

J Markovits, et al; Differential effects of two growth inhibitory K vitamin analogs on cell cycle regulating proteins in human hepatoma cells; Life Sci; 2003;72(24);2769-2784.

E Braud, et al.; Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties; Bioorg Med Chem; 2008;16(19);9040-9049.

M Sarkis, et al.; Design and synthesis of novel bis-thiazolone derivatives as micromolar CDC25 phosphatase inhibitors: Effect of dimerisation on phosphatase inhibition; Bioorganic Med Chem Lett; 2012;22(24);7345-7350.

S Kar, M Wang, SW Ham, BI Carr; H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK; Cancer Biol Ther; 2006;5(10);1340-1347.

JW Yang, et al.; A unique and rapid approach toward the efficient development of novel protein tyrosine phosphatase (PTP) inhibitors based on “clicked†pseudo-glycopeptides; Bioorganic Med Chem Lett; 2011;21(4);1092-1096.

XP He, et al.; Facile fabrication of promising protein tyrosine phosphatase (PTP) inhibitor entities based on “clicked†serine/threonine-monosaccharide hybrids; Bioorganic Med Chem; 2011;19(13);3892-3900.

XP He, et al.; Discovering the distinct inhibitory effects between C4-epimeric glycosyl amino acids: new insight into the development of protein tyrosine phosphatase inhibitors; Glycoconj J; 2011;28(7);493-497.

S Kolb, et al.; Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors; ChemMedChem; 2009;4(4);633-648.

A Lavecchia, S Cosconati, V Limongelli, E Novellino; Modeling of Cdc25B dual specifity protein phosphatase inhibitors: Docking of ligands and enzymatic inhibition mechanism; ChemMedChem; 2006;1(5);540-550.

H Park, YH Jeon; Toward the virtual screening of Cdc25A phosphatase inhibitors with the homology modeled protein structure; J Mol Model; 2008;14(9);833-841.

M Montes, et al.; Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors; J Chem Inf Model; 2008;48(1);157-165..

H Park, et al;. Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening; J Med Chem; 2008;51(18);5533-5541.

JC Collins, et al.; Prospective use of molecular field points in ligand-based virtual screening: efficient identification of new reversible Cdc25 inhibitors; Medchemcomm. 2013;4;1148.

T Besset, et al.; Preparation and evaluation of a set of bis(methoxycarbonylmethylthio) heteroquinones as CDC25B phosphatase inhibitors; Eur J Chem; 2011;2(4);433-440.

OO Ajani, OC Nwinyi; Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic)acryloyl}-2 H -chromen-2-one derivatives; J Heterocycl Chem; 2010;47(1);179–187.

BS Jayashree, S Arora, KN Venugopala; Microwave Assisted Synthesis of Substituted Coumarinyl Chalcones as Reaction Intermediates for Biologically Important Coumarinyl Heterocycles; Asian J Chem; 2008;20(1);1-7.

DP Specht, SY Farid, KL Payne, CG Houle; Co-initiator compositions for photopolymerization containing 3-keto-substituted coumarins, photopolymerizable composition and photographic element; Europeen Patent EP 22188 A2 ; 1981;Eur. Pat. Appl.; 1981; Jan 14, 1981

A Pedretti, L Villa, G Vistoli; VEGA - An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming; J Comput Aided Mol Des; 2004;18(3);167-173.

PDB code:1C25, http://www.rcsb.org/pdb/Welcome.do.

WL DeLano; The PyMOL Molecular Graphics System; Schrödinger LLC wwwpymolorg; 2002;Version 1.:http://www.pymol.org.

Downloads

Published

2016-01-12

Issue

Section

Organic Chemistry