Glucosinolate profiles by HPLC-DAD, phenolic compositions and antioxidant activity of Eruca vesicaria longirostris: Impact of plant part and origin

Authors

  • Saoussen Bouacida 1 University of Carthage, High School of Food Industries of Tunis, Avenue Alain Savary 58, 1003 Tunis, Tunisia 2 Faculty of Sciences of Tunis El Manar, Laboratory of Organic and Structural Chemistry, Campus Universitaire, 2092, Tunis, Tunisia
  • Hayet Ben Haj koubaier 1 University of Carthage, High School of Food Industries of Tunis, Avenue Alain Savary 58, 1003 Tunis, Tunisia 2 Faculty of Sciences of Tunis El Manar, Laboratory of Organic and Structural Chemistry, Campus Universitaire, 2092, Tunis, Tunisia 3High School of Agriculture of Kef, 7119, Le Kef, Tunisia
  • Ahmed Snoussi 1 University of Carthage, High School of Food Industries of Tunis, Avenue Alain Savary 58, 1003 Tunis, Tunisia 2 Faculty of Sciences of Tunis El Manar, Laboratory of Organic and Structural Chemistry, Campus Universitaire, 2092, Tunis, Tunisia
  • Marie Laure Fauconnier Gembloux Agro-Bio Tech, University of Liege, Organic and General Chemistry Department, Passage des Déportés st. 2, 5030, Gembloux, Namur, Belgium
  • Nabiha Bouzouita 1 University of Carthage, High School of Food Industries of Tunis, Avenue Alain Savary 58, 1003 Tunis, Tunisia 2 Faculty of Sciences of Tunis El Manar, Laboratory of Organic and Structural Chemistry, Campus Universitaire, 2092, Tunis, Tunisia

DOI:

https://doi.org/10.13171/mjc55/01606022015/bouzouita

Abstract

The glucosinolate profiles, phenol and flavonoid contents and the antioxidant activity of Eruca vesicaria longirostris were studied for different organs and origins. Eleven desulpho-glucosinolates (DS-GLSs) were isolated and quantified by lipid chromatography- DAD. Similarity between profiles was obtained. Total DS-GLS content, expressed as sinigrin equivalents (SE) revealed a certain variabilily ranging between (76.07-45.61), (27.01-13.53), (4.52 -18.01), (9.39-3.37) and (1.16-13.99) µmol /g DW for seeds, flowers, leaves, roots and stems, respectively. Results showed that seeds are rich in phenolics as they contain highest amounts of phenolics ranging from 27.6±0.5 to 33.47±0.5 mg GAE/g extract as compared to all other parts. Leaves and flowers had a significantly higher total phenolic content than stems and roots in all samples (p < 0.05). According to statistical analysis, the investigated seed extracts with values between (16.20±0.10-18.50±0.10 mg QE/g) exhibited the highest total flavonoids content, followed by leaves (13.00±0.40-15.80±0.30mg QE/g), flowers (10.40±0.40-12.90±0.90 mg QE/g) and stems (7.80±0.20- 9.80±0.70 mg QE/g). Antioxidant activity tested by DPPH, ABTS and FRAP assays, was higher for seeds, leaves and flowers than the other studied organs. These organs were characterized by a significantly high content in glucoerucin, nasturtin and epiprogroitrin, respectively.

References

- S. J. Kim and G. Ishii, Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin, Soil Science Plant Nutrition,2006,52,394-400. doi:10.1111/j.1747-0765.2006.00049.x.

- M. Cavaiuolo and A. Ferrante, Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads, Nutrients, 2014, 6, 1519-1538. doi:10.3390/nu6041519.

- S. J. Kim, K. Chiami and G. Ishii. Effect of ammonium: Nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativa Mill.). Soil Sci Plant Nutri., 2006, 52, 387-393. doi:10.1111/j.1747-0765.2006.00048.x.

- V. V. Bianco, Rocket Genetic Resources Network. In: Rocket Genetic Resources Network, 1995, 35-57.

- J. M. J. De Wet Zeven, Dictionary of Cultivated Plants and Their Regions of Diversity. 2nd ed. Wageningen: Centre for Agricultural Publishing and Documentation, 1982, 107.

- M. Khoobchandani, N. Ganesh, S. Gabbanini, L. Valgimigli and M. M. Srivastava, Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth, Fitoterapia, 2011, 82, 647-653. doi:10.1016/j.fitote.2011.02.004.

- M. Khoobchandani, K. B. Ojeswi, N. Ganesh, M. M. Srivastava, S. Gabbanini, R. Matera, R. Iori, and L. Valgimigli, Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: Comparison with various aerial and root plant extracts. Food Chem., 2010, 120, 217-224. doi:10.1016/j.foodchem.2009.10.011.

- F. Pasini, V. Verardo, M. F. Caboni and L. F. D’Antuono, Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD-MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources, Food Chemistry, 2012, 133, 1025-1033. doi:10.1016/j.foodchem.2012.01.021.

- M. Sarwar Alam, G. Kaur, Z. Jabbar, K. Javed and M. Athar, Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity, Food Chemistry and Toxicology, 2007, 45, 910-920. doi:10.1016/j.fct.2006.11.013.

- S. Alqasoumi, M. Al-Sohaibani, T. Al-Howiriny, M. Al-Yahya and S. Rafatullah, Rocket “Eruca sativaâ€: A salad herb with potential gastric anti-ulcer activity, World Journal of Gastroenterology, 2009, 15, 16, 1958-1965. doi:10.3748/wjg.15.1958.

- L. Jirovetz, D. Smith and G. Buchbauer, Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry, Journal of Agriculture and Food Chemistry, 2002, 50, 4643-4646. http://dx.doi.org/10.1021/jf020129n

- T. P. Yadava, D. W. Friedt and S. Gupta, Oil content and fatty acid composition of Taramira (Eruca sativa L.) genotypes, Journal of Food Science and Technology, 1998, 35, 557-558. http://dx.doi.org/10.1023/b:euph.0000040473.23941.76

- Z. Yaniv, D. Schafferman and Z. Amar, Tradition, Uses, and Biodiversity of Rocket (Eruca sativa) in Israel. Econ Bot., 1998, 52, 394-400. http://dx.doi.org/10.1007/bf02862069

- E. Fuentes, M. Alarcón, M. Fuentes, G. Carrasco, I. Palomo, A Novel Role of Eruca sativa Mill. (rocket) extract: Antiplatelet (NF-κB Inhibition) and antithrombotic activities, Nutrients, 2014, 6, 5839-5852. doi:10.3390/nu6125839.

- M. Gulfraz, A. Sadiq, H. Tariq, M. Imran, R. Qureshi and A. Zeenat, Phytochemical analysis and antibacterial activity of Eruca sativa seed. Pak J Bot., 2011, 43, (2),1351-1359. http://dx.doi.org/10.1016/j.fitote.2011.02.004

- L. F. D’Antuono, S. Elementi and S, R. Neri, Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 2008, 69, 187-199. doi:10.1016/j.phytochem.2007.06.019.

- R. N. Bennett, F. A. Mellon, N. P. Botting, J. Eagles, E. A. S. Rosa and G. Williamson, Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket), Phytochemistry, 2002, 61, 25-30. doi:10.1016/S0031-9422(02)00203-0.

- S. Alqasoumi, Carbon tetrachloride-induced hepatotoxicity: Protective effect of “Rocket†Eruca sativa L. in rats, Am J Chin Med., 2010, 38, 75-88. http://dx.doi.org/10.1142/s0192415x10007671

- V. De Feo and F. Senatore, Medicinal plants and phytotherapy in the Amalfitan coast, Salerno Province, Campania, Southern Italy, J. Ethnopharmacol., 1993, 39, 39-51. http://dx.doi.org/10.1016/0378-8741(93)90049-b

- B. Weckerle, M. Karin, B. Balazs, P. Schreier and G. Toth, Quercetin 3,3’,4'-tri-O-B-D-glucopyranosides from leaves of Eruca sativa (Mill.), Phytochemistry, 2001, 57, 547-551. doi.org/10.1016/s0031-9422(01)00059-0

- R. Chan, K. Lok and J. Woo, Prostate cancer and vegetable consumption, Mol Nutr Food Res., 2009, 53, 201-216. http://dx.doi.org/10.1002/mnfr.200800113

- I. Herr and M. V. Büchler, Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer, Cancer Treat Rev., 2010, 36, 377-383. http://dx.doi.org/10.1016/j.ctrv.2010.01.002

- A. Vazquez Roncero, L. Janer del vall and C. Janer del valle, Determination of olive oil total polyphénols, Grassa Aceites, 1973, 24, 350-355.

- A. Nakbi, M, Issaoui, S. Dabbou, N. Koubaa, A. Echbili,M. Hammami and N. Attia, Evaluation of antioxidant activities of phenolic compounds from two extra virgin olive oils, J Food Compos Anal., 2010, 23, 711-715. http://dx.doi.org/10.1016/j.jfca.2010.05.003

- M. Jay, J. F. Gonnet, E. Wollenweber and B. Voirin, Sur l’analyse qualitative des aglycones flavoniques dans une optique chimiotaxinomique, Phytochemistry, 1975, 14(7), 1605-1612. http://dx.doi.org/10.1016/0031-9422(75)85359-3

- H. Harnafi, N. Bouanani, M. Aziz , H. Serghini Caid, N. Ghalim and S. Amrani, The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: a comparison with fenofibrate, J Ethnopharmacol., 2007, 109(1), 156-160. http://dx.doi.org/10.1016/j.jep.2006.09.017

- M. Oyaizu, Studies on products of browning reaction prepared from glucosamine, Jpn. J. Nutr., 1986, 44, 307-315.

- D. Lopes-Lutz, S. D. Alviano, C. S. Alviano and P. P. Kolodziejczyk, Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils, Phytochemistry, 2008, 69, 1732-1738.

doi:10.1016/j.phytochem.2008.02.014

- A.Y. Loo, K. Jain and I. Darah, Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata, Food Chemistry, 2008, 107(3), 1151-1160.

doi: 10.1016/j.foodchem.2007.09.044

- R. Re, N and Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med., 1999, 26(9-10), 1231-1237.

doi: 10.1016/s0891-5849(98)00315-3

- L. Du, Y. Shen, X. Zhang, W. Prinyawiwatkul and Z. Xu, Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts. Food Chemistry, 2014, 153, 279-284. doi:10.1016/j.foodchem.2013.12.072.

- A. Sadiq, M. Q. Hayat and S. Murad Mall, Qualitative and Quantitative Determination of Secondary metabolites and Antioxidant Potential of Eruca sativa, Nat Prod Chem Res., 2014, 2(4), 1-7. doi:10.4172/2329-6836.1000137.

- I. Essaidi, Z. Brahmi, A. Snoussi, H. Ben Haj Koubaier, H. Casabianca, N. Abe, A. El Omri, M. M. Chaabouni and N. Bouzouita, Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract, Food Control., 2013, 32(1), 125-133. doi:10.1016/j.foodcont.2012.11.006.

- H. Ben Haj Koubaier, A. Snoussi, I. Essaidi, M. M. Chaabouni, P. Thonart and N. Bouzouita, Betalain and Phenolic Compositions, Antioxidant Activity of Tunisian Red Beet (Beta vulgaris L. conditiva ) Roots and Stems Extracts, Int J Food Prop., 2014, 17(9), 1934-1945. doi:10.1080/10942912.2013.772196.

- J. Harborne and C. Williams, Advances in flavonoid research since 1992, Phytochemistry, 2000, 55, 481-504. doi: 10.1016/s0031-9422(00)00235-1

- Agence Nationale pour la Maîtrise de l’Energie. SO. In: Données Climatiques de Base Pour Le Dimensionnement Des Installations de Chauffage et de Refroidissement, 2005.

- J. W. Fahey, A. T. Zalcmann and P. Talalay, The chemical diversity and distribution of glucosinolates and isothiocyanates amoung plants, Phytochemistry, 2001, 56, 5-51. doi:10.1016/S0031-9422(00)00316-2.

- L. Bell, M. J. Oruna-Concha and C. Wagstaff, Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops, Food Chemistry, 2015, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116.

- R. N. Bennett, R. Carvalho, F. A. Mellon, J. Eagles and E. A. S. Rosa, Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations, Journal of Agriculture and Food Chemistry, 2007, 55(1), 67-74. doi:10.1021/jf061997d.

- T. R. I. Cataldi, A. Rubino, F. Lelario and S. A. Bufo, N-Nitrosopiperazines form at high pH in post-combustion capture solutions containing piperazine: a low-energy collisional behaviour study, Rapid Commun mass Spectrom., 2007, 21, 2374-2388. doi:10.1002/rcm.

- A. L. H. Steindal, R. Rdven, E. Hansen and J. Mlmann, Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale, Food Chemistry, 2015, 174, 44-51. doi:10.1016/j.foodchem.2014.10.129.

- M. Francisco, D. A. Moreno, M. E. Cartea, F. Ferreres, C. Garcia-Viguera and P. Velasco, Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa, J Chromatogr A., 2009, 1216(38), 6611-6619. doi:10.1016/j.chroma.2009.07.055.

- K. L. Cheung and A. N. Kong, Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention, AAPS J., 2010, 12(1), 87-97. doi:10.1208/s12248-009-9162-8.

- L. G. Wang and J. Chiao, Down-regulation of CacyBP is associated with poor prognosis and the effects on COX-2 expression in breast cancer, Int J Oncol., 2010, 37, 533-539. doi:10.3892/ijo.

- M. Meyer and S. T. Adam, Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming, Eur Food Res Technol., 2008, 226(6), 1429-1437. doi:10.1007/s00217-007-0674-0.

- S. J. Kim, S. Jin and G. Ishii, Isolation and Structural Elucidation of 4-(B-D-Glucopyranosyldisulfanyl) butyl Glucosinolate from Leaves of Rocket Salad (Eruca sativa L.) and Its Antioxidative Activity, Biosci Biotechnol Biochem., 2004, 68(12), 2444-2450. http://dx.doi.org/10.1271/bbb.68.2444

- R. Amarowicz, A. Troszyńska, N. Baryłko-Pikielna and F. Shahidi, Extracts of polyphenolics from legume seeds – correlation between their total antioxidant activity, total phenolics content, tannins content and astringency, Journal of Food and Lipids, 2004, 11, 278-286. http://dx.doi: 10.1111/j.1745-4522.2004.01143.x

Downloads

Published

2016-06-02

Issue

Section

Food Chemistry