Prediction of surface tension of alcohol + water solutions using artificial neural networks
DOI:
https://doi.org/10.13171/mjc.1.5.2012.08.03.13Abstract
 Different Artificial Neural Network architectures have been implemented to predict Surface Tension of aqueous solutions of methanol, ethanol, 1-propanol and 2-propanol in range temperatures of 293.15-323.15 K. Artificial Neural Networks with four entrance variables, Critical Volume, log P, Mole Fraction and Temperature, were used. Best ANN architecture was formed by four input neurons, two middle layers (with eleven and three neurons respectively) and one output neuron. Root Mean Square Errors (RMSEs) are 0.34 mN·m-1 (R2= 0.9995) for the training set and 1.31 mN·m-1 (R2= 0.9955) for the validation set. Those errors correspond with a 0.62% error and 4.37% of error for training and validation set, respectively. For the full data set the Root Mean Square Error is 0.72 mN·m-1 (R2= 0.9976) with a 1.56% error.References
- F. Biscay, A. Ghoufi, P. Malfreyt, J. Chem. Phys. 2011, 134 (4), art. no. 044709.
- G. Vázquez, E. Ãlvarez, J. M. Navaza. J. Chem. Eng. Data. 1995, 40, 611-614.
- G. Vázquez, E. Alvarez, R. Rendo, E. Romero, J.M. Navaza, J. Chem. Eng. Data. 1996, 41 (4), 806-808.
- E. Ãlvarez, A. Cancela, R. Maceiras, J.M. Navaza, R. Taboas, J. Chem. Eng. Data. 2003, 48 (1), 32-35.
- E. Ãlvarez, G. Vázquez, M Sánchez-Vilas, B. Sanjurjo, J.M. Navaza, J. Chem. Eng. Data. 1997, 42 (5), 957-960.
- A. Khajeh, H.J. Modarress, Chemometr. 2011, 25 (6), 333-339.
- F.M. Menger, L. Shi, S.A.A. Rizvi, J. Am. Chem. Soc. 2009, 131 (30), 10380-10381.
- R. Pajarre, P. Koukkari, T. Tanaka, J. Lee, CALPHAD. 2006, 30 (2), 196-200.
- D. Fu, Ind. Eng. Chem. Res. 2007, 46 (22), 7378-7383.
- D. Fu, X.-S. Li, S. Yan, T. Liao, Ind. Eng. Chem. Res. 2006, 45 (24), 8199-8206.
- X. Tang, J. Gross, J. Supercrit. Fluid. 2010, 55 (2), 735-742.
- B. Peng, Y.-X Yu, J. Phys. Chem. B. 2008, 112 (48), 15407-15416.
- J.C. Barrett, J. Chem. Phys. 2006, 124 (14), art. no. 144705.
- R.L. Gardas, J.A.P. Coutinho, Fluid Phase Equilibr. 2008, 265 (1-2), 57-65.
- Z.W. Wang, G.Z Li, J.H. Mu, X.Y. Zhang, A.J. Lou, Chinese Chem. Lett. 2002, 13 (4), 363-366.
- T.A. Knotts, W.V. Wilding, J.L. Oscarson, R.L. Rowley, J. Chem. Eng. Data. 2001, 46 (5), 1007-1012.
- O. Emanuelsson, H. Nielsen, S. Brunak, G. Von Heijne, J. Mol. Biol. 2000, 300 (4), 1005-1016.
- C. Liu, P.M. Berry, T.P. Dawson, R.G. Pearson, Ecography. 2005, 28 (3), 385-393.
- J.-F. Guégan, S. Lek, T. Oberdorff, Nature. 1998, 391 (6665), 382-384.
- G. Astray, F.J. RodrÃguez-Rajo, J.A. Ferreiro-Lage, M Fernández-González, V. Jato, J.C. Mejuto, J. Environ. Monit. 2010, 12 (11), 2145-2152.
- M.G. Schaap, F.J. Leij, Soil Sci. 1998, 163 (10), 765-779.
- Ya.A. Pachepsky, D. Timlin, G. Varallyay, Soil Sci. Soc. Am. J. 1996, 60 (3), 727-733.
- P.B. Snow, D.S. Smith, W.J. Catalona, J. Urology. 1994, 152 (5 II), 1923-1926.
- J.S. Wei, B.T. Greer, F. Westermann, S.M. Steinberg, C.-G. Son, Q.-R Chen, C.C. Whiteford, S. Bilke, A.L. Krasnoselsky, N. Cenacchi, D. Catchpoole, F. Berthold, M. Schwab, J. Khan, Cancer Res. 2004, 64 (19), 6883-6891.
- W. Resch, N. Hoffman, R. Swanstrom, Virology. 2001, 288 (1), 51-62.
- M.J. Willis, G.A Montague, C. Di Massimo, M.T. Tham; A.J. Morris, Automatica. 1992, 28 (6), 1181-1187.
- M.G. Simões, B.K. Bose, R.J. Spiegel, IEEE T. Ind. Appl. 1997, 33 (4), 956-965.
- G. Astray, J.X. Castillo, J.A. Ferreiro-Lage, J.F. Galvez, J.C. Mejuto, Cienc. Tecnol. Aliment. 2010, 8 (1) 79-86.
- D. Achela, K. Fernando, A.W. Jayawardena, J. Hydrol. Eng. 1998, 3 (3), 203-209.
- Jr. E. Coppola, F. Szidarovszky, M. Poulton, E. Charles, J. Hydrol. Eng. 2003, 8 (6), 348-360.
- P. Araujo, G. Astray, J.A. Ferreiro-Lage, J.C. Mejuto, J.A. RodrÃguez-Suarez, B. Soto, J. Environ. Monit. 2011, 13 (1), 35-41.
- M. Canakci, A. Erdil, E. Arcaklioǧlu, Appl. Energ. 2006, 83 (6), 594-605.
- G. Sacchero, M. Concetta Bruzzoniti, C. Sarzanini, E. Mentasti, H.J. Metting, P.M.J. Coenegracht, J. Chromatogr. A. 1998, 799 (1-2), 35-45.
- G. Astray, P.V. Caderno, J.A. Ferreiro-Lage, J.F. Gálvez, J.C. Mejuto, J. Chem. Eng. Data. 2010, 55 (9), 3542-3547.
- X.-L. Xing, X.-W He, Anal. Chim. Acta. 1997, 349 (1-3), 283-286.
- Y. Dou, Y. Sun, Y. Ren, Y. Ren, Anal. Chim. Acta. 2005, 528 (1), 55-61.
- W. Liu, C. Cao, Colloid Polym. Sci. 2009, 287 (7), 811-818.
- X. Yu, W. Yu, B. Yi, X. Wang, Chem. Pap. 2009, 63 (4), 432-437.
- X. Wang, H. Song, G. Qiu, D. Wang, J. Mater. Sci. Technol. 2000, 16 (4), 435-438.
- D.E. Rumelhart, J.L. McClelland. Parallel distributed processing: Exploration in the microstructure of cognition; MIT Press: Cambridge, USA 1986.
- A. Cid, G. Astray, J.A. Manso, J.C. Mejuto, O.A. Moldes, Tenside Surfact. Det. 2011, 48 (6), 477-483.
- M. Nørgaard, O. Ravn, N.K. Poulsen, L.K. Hansen. Neural Networks for Modelling and Control of Dynamic Systems; Springer: London, UK 2003.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).