Prediction of surface tension of alcohol + water solutions using artificial neural networks

Authors

  • Gonzalo Astray Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Ourense, SPAIN
  • Oscar A. Moldes Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Ourense, SPAIN
  • Iago A. Montoya Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Ourense, SPAIN
  • Juan C. Mejuto Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Ourense, SPAIN

DOI:

https://doi.org/10.13171/mjc.1.5.2012.08.03.13

Abstract

 Different Artificial Neural Network architectures have been implemented to predict Surface Tension of aqueous solutions of methanol, ethanol, 1-propanol and 2-propanol in range temperatures of 293.15-323.15 K. Artificial Neural Networks with four entrance variables, Critical Volume, log P, Mole Fraction and Temperature, were used. Best ANN architecture was formed by four input neurons, two middle layers (with eleven and three neurons respectively) and one output neuron. Root Mean Square Errors (RMSEs) are 0.34 mN·m-1 (R2= 0.9995) for the training set and 1.31 mN·m-1 (R2= 0.9955) for the validation set. Those errors correspond with a 0.62% error and 4.37% of error for training and validation set, respectively. For the full data set the Root Mean Square Error is 0.72 mN·m-1 (R2= 0.9976) with a 1.56% error.

References

- F. Biscay, A. Ghoufi, P. Malfreyt, J. Chem. Phys. 2011, 134 (4), art. no. 044709.

- G. Vázquez, E. Ãlvarez, J. M. Navaza. J. Chem. Eng. Data. 1995, 40, 611-614.

- G. Vázquez, E. Alvarez, R. Rendo, E. Romero, J.M. Navaza, J. Chem. Eng. Data. 1996, 41 (4), 806-808.

- E. Ãlvarez, A. Cancela, R. Maceiras, J.M. Navaza, R. Taboas, J. Chem. Eng. Data. 2003, 48 (1), 32-35.

- E. Ãlvarez, G. Vázquez, M Sánchez-Vilas, B. Sanjurjo, J.M. Navaza, J. Chem. Eng. Data. 1997, 42 (5), 957-960.

- A. Khajeh, H.J. Modarress, Chemometr. 2011, 25 (6), 333-339.

- F.M. Menger, L. Shi, S.A.A. Rizvi, J. Am. Chem. Soc. 2009, 131 (30), 10380-10381.

- R. Pajarre, P. Koukkari, T. Tanaka, J. Lee, CALPHAD. 2006, 30 (2), 196-200.

- D. Fu, Ind. Eng. Chem. Res. 2007, 46 (22), 7378-7383.

- D. Fu, X.-S. Li, S. Yan, T. Liao, Ind. Eng. Chem. Res. 2006, 45 (24), 8199-8206.

- X. Tang, J. Gross, J. Supercrit. Fluid. 2010, 55 (2), 735-742.

- B. Peng, Y.-X Yu, J. Phys. Chem. B. 2008, 112 (48), 15407-15416.

- J.C. Barrett, J. Chem. Phys. 2006, 124 (14), art. no. 144705.

- R.L. Gardas, J.A.P. Coutinho, Fluid Phase Equilibr. 2008, 265 (1-2), 57-65.

- Z.W. Wang, G.Z Li, J.H. Mu, X.Y. Zhang, A.J. Lou, Chinese Chem. Lett. 2002, 13 (4), 363-366.

- T.A. Knotts, W.V. Wilding, J.L. Oscarson, R.L. Rowley, J. Chem. Eng. Data. 2001, 46 (5), 1007-1012.

- O. Emanuelsson, H. Nielsen, S. Brunak, G. Von Heijne, J. Mol. Biol. 2000, 300 (4), 1005-1016.

- C. Liu, P.M. Berry, T.P. Dawson, R.G. Pearson, Ecography. 2005, 28 (3), 385-393.

- J.-F. Guégan, S. Lek, T. Oberdorff, Nature. 1998, 391 (6665), 382-384.

- G. Astray, F.J. Rodríguez-Rajo, J.A. Ferreiro-Lage, M Fernández-González, V. Jato, J.C. Mejuto, J. Environ. Monit. 2010, 12 (11), 2145-2152.

- M.G. Schaap, F.J. Leij, Soil Sci. 1998, 163 (10), 765-779.

- Ya.A. Pachepsky, D. Timlin, G. Varallyay, Soil Sci. Soc. Am. J. 1996, 60 (3), 727-733.

- P.B. Snow, D.S. Smith, W.J. Catalona, J. Urology. 1994, 152 (5 II), 1923-1926.

- J.S. Wei, B.T. Greer, F. Westermann, S.M. Steinberg, C.-G. Son, Q.-R Chen, C.C. Whiteford, S. Bilke, A.L. Krasnoselsky, N. Cenacchi, D. Catchpoole, F. Berthold, M. Schwab, J. Khan, Cancer Res. 2004, 64 (19), 6883-6891.

- W. Resch, N. Hoffman, R. Swanstrom, Virology. 2001, 288 (1), 51-62.

- M.J. Willis, G.A Montague, C. Di Massimo, M.T. Tham; A.J. Morris, Automatica. 1992, 28 (6), 1181-1187.

- M.G. Simões, B.K. Bose, R.J. Spiegel, IEEE T. Ind. Appl. 1997, 33 (4), 956-965.

- G. Astray, J.X. Castillo, J.A. Ferreiro-Lage, J.F. Galvez, J.C. Mejuto, Cienc. Tecnol. Aliment. 2010, 8 (1) 79-86.

- D. Achela, K. Fernando, A.W. Jayawardena, J. Hydrol. Eng. 1998, 3 (3), 203-209.

- Jr. E. Coppola, F. Szidarovszky, M. Poulton, E. Charles, J. Hydrol. Eng. 2003, 8 (6), 348-360.

- P. Araujo, G. Astray, J.A. Ferreiro-Lage, J.C. Mejuto, J.A. Rodríguez-Suarez, B. Soto, J. Environ. Monit. 2011, 13 (1), 35-41.

- M. Canakci, A. Erdil, E. Arcaklioǧlu, Appl. Energ. 2006, 83 (6), 594-605.

- G. Sacchero, M. Concetta Bruzzoniti, C. Sarzanini, E. Mentasti, H.J. Metting, P.M.J. Coenegracht, J. Chromatogr. A. 1998, 799 (1-2), 35-45.

- G. Astray, P.V. Caderno, J.A. Ferreiro-Lage, J.F. Gálvez, J.C. Mejuto, J. Chem. Eng. Data. 2010, 55 (9), 3542-3547.

- X.-L. Xing, X.-W He, Anal. Chim. Acta. 1997, 349 (1-3), 283-286.

- Y. Dou, Y. Sun, Y. Ren, Y. Ren, Anal. Chim. Acta. 2005, 528 (1), 55-61.

- W. Liu, C. Cao, Colloid Polym. Sci. 2009, 287 (7), 811-818.

- X. Yu, W. Yu, B. Yi, X. Wang, Chem. Pap. 2009, 63 (4), 432-437.

- X. Wang, H. Song, G. Qiu, D. Wang, J. Mater. Sci. Technol. 2000, 16 (4), 435-438.

- D.E. Rumelhart, J.L. McClelland. Parallel distributed processing: Exploration in the microstructure of cognition; MIT Press: Cambridge, USA 1986.

- A. Cid, G. Astray, J.A. Manso, J.C. Mejuto, O.A. Moldes, Tenside Surfact. Det. 2011, 48 (6), 477-483.

- M. Nørgaard, O. Ravn, N.K. Poulsen, L.K. Hansen. Neural Networks for Modelling and Control of Dynamic Systems; Springer: London, UK 2003.

Downloads

Published

2012-03-08

Issue

Section

Physical Chemistry