Quantitative proteomic analysis of differentially expressed proteins in Aβ(17-42) treated synaptosomes
DOI:
https://doi.org/10.13171/mjc.1.5.2012.18.03.17Abstract
Oxidative stress has been associated in the pathogenesis of numerous diseases such as various neurodegenerative disorders, ischemia, and cancer. The brain is susceptible to oxidative stress due to its high content of peroxidizable unsaturated fatty acids, high consumption of oxygen, and elevated levels of free radicals. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can react with biomolecules such as proteins, lipids, carbohydrates, DNA, and RNA, which can lead to oxidative damage, cellular dysfunction, and ultimately cell death. Down syndrome (DS) is caused by trisomy of chromosome 21, a genetic abnormality in which an extra copy of the chromosome is present. DS patients have extensive deposition of Aβ(17-42) peptide, which could contribute to their increased rate of developing Alzheimer’s disease (AD), which is consistent with current research. Since AD cannot be properly diagnosed until autopsy, development of a novel Down syndrome model using Aβ(17-42) could be beneficial in determining oxidative stress levels and their relationship to mild cognitive impairment (MCI), the earliest form of AD. This work will demonstrate the use of a novel Down Syndrome model and its correlation to oxidative stress. We have found a significant difference between oxidative stress levels in Aβ(17-42) treated synaptosomes and control. By using proteomics, we have also identified several biomarkers including aldehyde dehydrogenase, aldolase, α-enolase, heat shock cognate 71, peptidyl-prolyl cis-trans isomerase, and ATP synthase α chain. Our present findings suggest the role of Aβ(17-42) as one of the contributing factors in mediating oxidative stress in DS and AD brain leading to neurodegeneration. This novel DS model may have potential applications as a diagnostic tool to identify biomarkers that may contribute to Alzheimer’s disease.References
- R. Sultana, M. Perluigi, D.A. Butterfield, Acta Neuropathol, 2009, 118, 131-50.
- H.F. Poon, R.A. Vaishnav, T.V. Getchell, M.L. Getchell, D.A. Butterfield, Neurobiol Aging, 2006, 27, 1010-9.
- C.C. Peterson, J Perinat Educ, 2006, 15, 19-25.
- F. Beacher, E. Daly, A. Simmons, V. Prasher, R. Morris, C. Robinson, S. Lovestone, K. Murphy, D.G. Murphy, Psychol Med, 2010, 40, 611-9.
- G. Lubec, E. Engidawork, J Neurol, 2002, 249, 1347-56.
- S.V. Jovanovic, D. Clements, K. MacLeod, Free Radic Biol Med, 1998, 25, 1044-8.
- M. Zana, Z. Janka, J. Kalman, Neurobiol Aging, 2007, 28, 648-76.
- R. Sultana, M. Perluigi, D.A. Butterfield, Antioxid Redox Signal, 2006, 8, 2021-37.
- D. Boyd-Kimball, A. Castegna, R. Sultana, H.F. Poon, R. Petroze, B.C. Lynn, J.B. Klein, D.A. Butterfield, Brain Res, 2005, 1044, 206-15.
- C. Zabel, D. Sagi, A.M. Kaindl, N. Steireif, Y. Klare, L. Mao, H. Peters, M.A. Wacker, R. Kleene, J. Klose, J Proteome Res, 2006, 5, 1948-58.
- H.Y. Zoghbi, J. Botas, Trends Genet, 2002, 18, 463-71.
- T. Schulenborg, O. Schmidt, A. van Hall, H.E. Meyer, M. Hamacher, K. Marcus, J Neural Transm, 2006, 113, 1055-73.
- W.B. Zigman, I.T. Lott, Ment Retard Dev Disabil Res Rev, 2007, 13, 237-46.
- D. Boyd-Kimball, R. Sultana, H. Mohmmad-Abdul, D.A. Butterfield, Peptides, 2005, 26, 665-73.
- V. Pancholi, Cellular and Molecular Life Sciences, 2001, 58, 902-20.
- A.R. Kolber, M.N. Goldstein, B.W. Moore, Proc Natl Acad Sci U S A, 1974, 71, 4203-7.
- D.A. Butterfield, M.L. Lange, J Neurochem, 2009, 111, 915-33.
- J. Petrak, R. Ivanek, O. Toman, R. Cmejla, J. Cmejlova, D. Vyoral, J. Zivny, C.D. Vulpe, Proteomics, 2008, 8, 1744-9.
- D.A. Butterfield, R. Sultana, J Alzheimers Dis, 2007, 12, 61-72.
- R.C. Vannucci, S.J. Vannucci, Semin Perinatol, 2000, 24, 107-15.
- H. Mohmmad Abdul, D.A. Butterfield, Biochim Biophys Acta, 2005, 1741, 140-8.
- E. Lorentzen, B. Siebers, R. Hensel, E. Pohl, Biochemical Society Transactions, 2004, 32, 259-63.
- Y. Sekar, T.C. Moon, C.M. Slupsky, A.D. Befus, J Immunol, 2010, 185, 578-87.
- C.H. Chen, L. Sun, D. Mochly-Rosen, Cardiovasc Res, 2010, 88, 51-7.
- V. Saini, R.H. Shoemaker, Cancer Sci, 2010, 101, 16-21.
- R. Lindahl, Critical Reviews in Biochemistry and Molecular Biology, 1992, 27, 283-335.
- L.C. Hsu, W.C. Chang, J Biol Chem, 1991, 266, 12257-65.
- M.J. Picklo, T.J. Montine, V. Amarnath, M.D. Neely, Toxicol Appl Pharmacol, 2002, 184, 187-97.
- K. Kamino, K. Nagasaka, M. Imagawa, H. Yamamoto, H. Yoneda, A. Ueki, S. Kitamura, K. Namekata, T. Miki, S. Ohta, Biochem Biophys Res Commun, 2000, 273, 192-6.
- V. Calabrese, C. Colombrita, R. Sultana, G. Scapagnini, M. Calvani, D.A. Butterfield, A.M. Stella, Antioxid Redox Signal, 2006, 8, 404-16.
- H.M. Abdul, V. Calabrese, M. Calvani, D.A. Butterfield, J Neurosci Res, 2006, 84, 398-408.
- A. Castegna, M. Aksenov, V. Thongboonkerd, J.B. Klein, W.M. Pierce, R. Booze, W.R. Markesbery, D.A. Butterfield, J Neurochem, 2002, 82, 1524-32.
- B.C. Yoo, R. Seidl, N. Cairns, G. Lubec, J Neural Transm Suppl, 1999, 57, 315-22.
- J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, EMBO J, 1982, 1, 945-51.
- R. Sultana, D. Boyd-Kimball, H.F. Poon, J. Cai, W.M. Pierce, J.B. Klein, M. Merchant, W.R. Markesbery, D.A. Butterfield, Neurobiol Aging, 2006, 27, 1564-76.
- D.A. Butterfield, H.M. Abdul, W. Opii, S.F. Newman, G. Joshi, M.A. Ansari, R. Sultana, J Neurochem, 2006, 98, 1697-706.
- S.S. Schochet, Jr., P.W. Lampert, W.F. McCormick, Acta Neuropathol, 1973, 23, 342-6.
- R. Subramaniam, F. Roediger, B. Jordan, M.P. Mattson, J.N. Keller, G. Waeg, D.A. Butterfield, J Neurochem, 1997, 69, 1161-9.
- S.H. Kim, R. Vlkolinsky, N. Cairns, G. Lubec, Cell Mol Life Sci, 2000, 57, 1810-6.
- K. Hensley, N. Hall, R. Subramaniam, P. Cole, M. Harris, M. Aksenov, M. Aksenova, S.P. Gabbita, J.F. Wu, J.M. Carney, et al., J Neurochem, 1995, 65, 2146-56.
- C.O. Hebb, V.P. Whittaker, J Physiol, 1958, 142, 187-96.
- E.G. Gray, V.P. Whittaker, J Anat, 1962, 96, 79-88.
- A.I. Breukel, E. Besselsen, W.E. Ghijsen, Methods Mol Biol, 1997, 72, 33-47.
- V. Thongboonkerd, J. Luengpailin, J. Cao, W.M. Pierce, J. Cai, J.B. Klein, R.J. Doyle, J Biol Chem, 2002, 277, 16599-605.
- J. Cox, M. Mann, J Am Soc Mass Spectrom, 2009, 20, 1477-85.
- L.J. Corkery, H. Pang, B.B. Schneider, T.R. Covey, K.W. Siu, J Am Soc Mass Spectrom, 2005, 16, 363-9.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).