Incorporation of gold nanoparticles into pH responsive mixed microgel systems

Authors

  • Azwan Mat Lazim School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Julian Eastoe School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
  • Melanie Bradley School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

DOI:

https://doi.org/10.13171/mjc.1.5.2012.11.04.19

Abstract

Abstract: This research attempts to demonstrate that gold nanoparticles are stable and easily dispersed in mixed microgel systems. In order to prepare stable and controllable responsive systems, the polymers were chosen to be pH responsive. As a result, that the charge signs (+/-) and level could be readily manipulated by adjusting the background solution pH. A switchable ‘on’ and ‘off’ system was obtained where these composite AuMES-NP-MM systems switched from a dispersed (pH 10) to a collapsed state (pH 3). This variation in pH affected the dispersion stability due to differences in the microgel particle charges. These systems are therefore successful multifunctional systems which act as reversible scaffolds for support and entrapment of AuMES-NPs. A stability graph was plotted and based on calculation, the amount of AuNPs dispersed in the microgel were estimated. These promising results offer wide applications in various areas especially using the microgel systems as a responsive template.

References

- Sanchez, J. M.; Hidalgo, M.; Salvada, V. Solvent Extraction and Ion Exchange, 2000, 18, 1199 - 1217.

- Martínez, S.; Navarro, P.; Sastre, A. M.; Alguacil, F. J. Hydrometallurgy, 1996, 43, 1-12.

- Akita, S.; Yang, L.; Takeuchi, H. Hydrometallurgy, 1996, 43, 37-46.

- Myakonkaya, O.; Eastoe, J. Advances in Colloid and Interface Science, 2009, 149, 39-46.

- Minati, L.; Biffis, A. Chemical Communications, 2005, 1034-1036.

- Yusa, S.-i.; Yamago, S.; Sugahara, M.; Morikawa, S.; Yamamoto, T.; Morishima, Y. Macromolecules, 2007, 40, 5907-5915.

- Starck, P.; Ducker, W. A. Langmuir, 2009, 25, 2114-2120.

- Fernandez-Nieves, A.; Marquez, M. J. Chem. Phys., 2005, 122, 084702-084706.

- Bradley, M.; Vincent, B.; Warren, N.; Eastoe, J.; Vesperinas, A. Langmuir, 2005, 22, 101-105.

- Sawai, T.; Shinohara, H.; Ikariyama, Y.; Aizawa, M. Journal of Electroanalytical Chemistry, 1991, 297, 399-407.

- Hall, R. J.; Pinkrah, V. T.; Chowdhry, B. Z.; Snowden, M. J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233, 25-38.

- Wang, Q.; Heiskanen, K. International Journal of Mineral Processing, 1992, 35, 121-131.

-Morris, G. E.; Skinner, W. A.; Self, P. G.; Smart, R. S. C. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 27-41.

- Morris, G. E.; Vincent, B.; Snowden, M. J. Journal of Colloid and Interface Science, 1997, 190, 198-205.

- Hui, D.; Nawaz, M.; Morris, D. P.; Edwards, M. R.; Saunders, B. R. Journal of Colloid and Interface Science, 2008, 324, 110-117.

- Wang, C.; Flynn, N. T.; Langer, R. Advanced Materials, 2004, 16, 1074.

- Das, M.; Zhang, H.; Kumacheva, E. Annual Review of Materials Research, 2006, 36, 117-142.

- Wang, Y.; Wei, G.; Wen, F.; Zhang, X.; Zhang, W.; Shi, L. Journal of Molecular Catalysis A: Chemical, 2008, 280, 1-6.

- Karg, M.; Wellert, S.; Pastoriza-Santos, I.; Lapp, A.; Liz-Marzan, L. M.; Hellweg, T. Physical Chemistry Chemical Physics, 2008, 10, 6708-6716.

-Davies, P. T.; Vincent, B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, In Press, Corrected Proof. 2009.

- Pelton, R. H.; Chibante, P. Colloids and Surfaces, 1986, 20, 247-256.

- M. Bradley, B. Vincent, G. Burnett, Langmuir, 2007, 23, 9237.

- Lin, W.; Kobayashi, M.; Skarba, M.; Mu, C.; Galletto, P.; Borkovec, M. Langmuir, 2005, 22, 1038-1047.

Downloads

Published

2012-04-11

Issue

Section

Polymer Chemistry