Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus

Authors

  • Youness Essaadaoui LABORATORY OF ORGANIC SYNTHESIS AND EXTRACTION PROCESSES DEPARTEMENT OF CHEMISTRY FACULTY OF SCIENCES IBN TOFAIL UNIVERSITY KENITRA MOROCCO
  • Ahmed Lebkiri LABORATORY OF ORGANIC SYNTHESIS AND EXTRACTION PROCESSES DEPARTEMENT OF CHEMISTRY FACULTY OF SCIENCES IBN TOFAIL UNIVERSITY KENITRA MOROCCO
  • EL Houssein Rifi LABORATORY OF ORGANIC SYNTHESIS AND EXTRACTION PROCESSES DEPARTEMENT OF CHEMISTRY FACULTY OF SCIENCES IBN TOFAIL UNIVERSITY KENITRA MOROCCO
  • Lamya Kadiri LABORATORY OF ORGANIC SYNTHESIS AND EXTRACTION PROCESSES DEPARTEMENT OF CHEMISTRY FACULTY OF SCIENCES IBN TOFAIL UNIVERSITY KENITRA MOROCCO
  • Abdelkarim Ouass LABORATORY OF ORGANIC SYNTHESIS AND EXTRACTION PROCESSES DEPARTEMENT OF CHEMISTRY FACULTY OF SCIENCES IBN TOFAIL UNIVERSITY KENITRA MOROCCO

DOI:

https://doi.org/10.13171/mjc72/01808150945-essaadaoui

Abstract

In this work, we used the bark of eucalyptus grafted with acrylic acid (EAA) as an adsorbent for removing of Co2+ ions from aqueous solutions. EAA was characterized using Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray diffraction (XRD), and bohemian method. The bulk density and the zero-charge point (pzch) were also determined. The results showed that eucalyptus grafted with acrylic acid (EAA) is rich in COOH and OH groups and pzch is acidic. We also valorized the Bark of Eucalyptus (EB) in the removing of Co2+ ions from aqueous solutions. The kinetic study showed that the extraction equilibrium of Co2+ ions by EB is reached after 40 min and the extraction process is expressed by the second-order kinetic model. The effect of Co2+ concentration and initial pH on the removal efficiency showed that the binding capacity increases with increasing in the pHi and the concentration of Co2+ ions and the maximum capacity is 55.55 mg/g. The mathematical modelling study of the adsorption of Co2+ ions on the BE showed that the adsorption process follows the Langmuir model. The kinetics of desorption is 8 times faster than the extraction and our material is regenerated with higher performance.

References

- I. Smičiklas, S. Dimović, I. Plećaš, M. Mitrić. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006, 40 (12), 2267–2274

- N. Sezgin, M. Sahin, A. Yalcin, Y. Koseoglu. Synthesis, Characterization and, the Heavy Metal Removal Efficiency of MFe2O4 (M=Ni, Cu) Nanoparticles. Ekoloji 2013, 89-96.

- M.G. da Fonseca, M.M. de Oliveira, L.N. Arakaki, J.G. Espinola, C. Airoldi. Natural vermiculite as an exchanger support for heavy cations in aqueous solution. J. Colloid Interface Sci. 2005, 285 (1), 50-55.

- E. Erdem, N. Karapinar, R. Donat. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280 (2), 309-314.

- M. Kara, H. Yuzer, E. Sabah, M.S. Celik. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 2003, 37 (1), 224-232.

- Ö. Yavuz, Y. Altunkaynak, F. Güzel. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 2003, 37 (4), 948-952.

- I. Kim, M. Lee, S. Wang. Heavy metal removal in groundwater originating from acid mine drainage using dead Bacillus drentensis sp. immobilized in polysulfone polymer. J. Environ. Manage. 2014, 146, 568-574.

- S.S. Salih, T.K. Ghosh. Preparation and characterization of bioadsorbent beads for chromium and zinc ions adsorption. Cogent Environ. Sci. 2017, 3 (1), 1401577.

- S.S. Salih, T.K. Ghosh. Preparation and Characterization of Chitosan-Coated Diatomaceous Earth for Hexavalent Chromium Removal. Environ. Process. 2018, 5 (1), 23-39.

- S.S. Salih, T.K. Ghosh. Highly efficient competitive removal of Pb (II) and Ni (II) by chitosan/diatomaceous earth composite. J. Environ. Chem. Eng. 2018, 6 (1), 435-443.

- S.S. Salih, T.K. Ghosh. Adsorption of Zn (II) ions by chitosan coated diatomaceous earth. Int. J. Biol. Macromol. 2018, 106, 602-610.

- E.D.G. Lussac. Adsorption des éléments traces métalliques par les écorces forestières, un co-produit de la filière bois. Optimisation des propriétés par modifications induites par voies chimique et biologique.

- I. Gaballah, G. Kilbertus. Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J. Geochem. Explor. 1998, 62 (1), 241-286.

- J. Fiset, J. Blais, R. Ben Cheikh, R. Tyagi. Revue sur l'enlèvement des métaux des effluents par adsorption sur la sciure et les écorces de bois. Rev. Sci. EauJournal Water Sci. 2000, 13 (3), 325-349.

- J.J. Salazar-Rabago, R. Leyva-Ramos. Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb (II) from aqueous solutions. J. Environ. Manage. 2016, 169, 303-312.

- N. Rajamohan, M. Rajasimman, R. Rajeshkannan, V. Saravanan. Equilibrium, kinetic and thermodynamic studies on the removal of Aluminum by modified Eucalyptus camaldulensis barks. Alex. Eng. J. 2014, 53 (2), 409-415.

- I. Ghodbane, O. Hamdaoui. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater. 2008, 160 (2), 301-309.

- I. Ghodbane, L. Nouri, O. Hamdaoui, M. Chiha. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J. Hazard. Mater. 2008, 152 (1), 148-158.

- S. Afroze, T.K. Sen, H.M. Ang. Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study. Process Saf. Environ. Prot. 2016, 102, 336-352.

- V. Sarin, K. Pant. Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 2006, 97 (1), 15-20.

- M. Geay, V. Marchetti, A. Clément, B. Loubinoux, P. Gérardin. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. J. Wood Sci. 2000, 46 (4), 331-333.

- V. Marchetti. Utilisation de sciures chimiquement modifiees pour l'elimination de metaux lourds en solution aqueuse: etude du greffage de capteurs caboxyliques et essais analytiques d'extraction. In Quatrième Colloque Sciences et Industrie du Bois; 1996; pp 195-202.

- V. Marchetti, P. Gerardin, P. Tekely, B. Loubinoux. Graft copolymerization of acrylic

- acid onto sawdust using KMnO4 as initiator. Holzforsch.-Int. J. Biol. Chem. Phys. Technol. Wood 1998, 52 (6), 654-660.

- R. Saliba, H. Gauthier, R. Gauthier, M. Petit-Ramel. The Use of Eucalyptus Barks for the Adsorption of Heavy Metal Ions and Dyes. Adsorpt. Sci. Technol. 2002, 20 (2), 119-129.

- G. Vazquez, J. Gonzalez-Alvarez, S. Freire, M. López-Lorenzo, G. Antorrena. Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresour. Technol. 2002, 82 (3), 247-251.

- Y. Essaadaoui, L. Kadiri, E.H. Rifi, A. Lebkiri. Microstructure characterization of the barks of eucalyptus eucalyptus,. IJSER 2016, 7 (11), 1382-1387.

- Y. ESSAADAOUI, L. KADIRI, E. RIFI, A. LEBKIRI. Characterization of the microstructure of bark of eucalyptus "eucalyptus camaldulensis." Dielectr. Mater. Appl. ISyDMA 2016 2016, 1, 298.

- Y. Essaadaoui, A. Lebkiri, E. Rifi, L. Kadiri, A. Ouass. Adsorption of lead by modified Eucalyptus camaldulensis barks: equilibrium, kinetic and thermodynamic studies. DESALINATION WATER Treat. 2018, 111, 267-277.

- V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix. Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 2003, 105 (1-3), 121-142.

- S.P. Pohjamo, J.E. Hemming, S.M. Willför, M.H.T. Reunanen, B.R. Holmbom. Phenolic extractives in Salix caprea wood and knots. Phytochemistry 2003, 63 (2), 165-169.

- T.P. Schultz, D.D. Nicholas. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 2000, 54 (1), 47-52.

- H.P. Boehm. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32 (5), 759-769.

- S. Benyoucef, M. Amrani. RETRACTED: Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination 2011, 275 (1), 231-236.

- M.A. Sawpan, K.L. Pickering, A. Fernyhough. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos. Part Appl. Sci. Manuf. 2011, 42 (8), 888-895.

- H.P. Boehm. Surface oxides on carbon and their analysis: a critical assessment. Carbon 2002, 40 (2), 145-149.

- A. Elabed. Réactivité thermique et cinétique de dégradation du bois d'arganier: Application l'élaboration du charbon actif par activation chimique l"acide phosphorique. 2007.

- N.E. Marcovich, M.M. Reboredo, M.I. Aranguren. Composites from sawdust and unsaturated polyester. J. Appl. Polym. Sci. 1996, 61 (1), 119-124.

- L. Kadiri, A. LEBKIRI, E. RIFI, et al. Characterization of coriander seeds "coriandrum sativum." Cellulose 2017, 34, 0-2.

- L. KADIRI, Y. ESSAADAOUI, E. RIFI, A. LEBKIRI. Characterization of microstructure of coriander seeds (coriandrum sativum). Dielectr. Mater. Appl. ISyDMA"2016 2016, 1, 294.

- B. Zhu, T. Fan, D. Zhang. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater. 2008, 153 (1-2), 300-308.

- M. Farasati, S. Haghighi, S. Boroun. Cd removal from aqueous solution using agricultural wastes. Desalination Water Treat. 2016, 57 (24), 11162-11172.

- L. Kadiri, A. Lebkiri, E.H. Rifi, et al. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum). In E3S Web of Conferences; EDP Sciences, 2018; Vol. 37, p 02005.

- A. Ouass, L. Kadiri, Y. Essaadaoui, et al. Removal of trivalent chromium ions from aqueous solutions by Sodium polyacrylate beads. Mediterr. J. Chem. 2018, 7 (2), 125-134.

- A. Ouass, Y. Essaadaoui, L. Kadiri, et al. Adsorption of Cr (III) from aqueous solution by two forms of a superabsorbant polymer: parametric study and effect of activation mode. In E3S Web of Conferences; EDP Sciences, 2018; Vol. 37, p 02001.

- R. Ertaş, N. Öztürk. Removal of Cr (VI) from aqueous solution onto chestnut shell: application of full factorial design and

equilibrium studies. Desalination Water Treat. 2013, 51 (13–15), 2909–2914

- C. Caramalău, l Bulgariu, m Macoveanu. Cobalt (II) Removal from Aqueous Solutions by Adsorption on Modified Peat Moss. Chem.

Bull. “POLITEHNICA” Univ. (Timisoara) 2009; Volume 54(68), 1.

- M. Abbas, S. Kaddour, M. Trari. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng.

Chem. 2014, 20 (3), 745–751.

- A. saad. equilibrium study of adsorption of cobalt ions from wastewater using saudi roasted datepits. research journal of environmental toxicology 2010; 4 (1), 1-12

- M. Abbas, S. Kaddour, M. Trari. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 2014, 20 (3), 745-751.

Downloads

Published

2018-09-15

Issue

Section

Environmental Chemistry