Sorption of 1–Naphthol on –Cyclodextrin–Poly(ethylene Glycol) hydrogels

Authors

  • Ivan Sanchez Grupo de Nuevos Materiales y Espectroscopia Supramolecular. Facultad de Ciencia y Tecnología, Campus de Leioa, Vizcaya, Spain.
  • Luis C. Cesteros Grupo de Nuevos Materiales y Espectroscopia Supramolecular. Facultad de Ciencia y Tecnología, Campus de Leioa, Vizcaya, Spain.
  • Issa Katime Grupo de Nuevos Materiales y Espectroscopia Supramolecular. Facultad de Ciencia y Tecnología, Campus de Leioa, Vizcaya, Spain.

DOI:

https://doi.org/10.13171/mjc.1.5.2012.09.08.17

Abstract

 The sorption behavior of hydrogels prepared by crosslinking ï¢â€“cyclodextrin with poly(ethylene glycol) modified with isocyanate end groups, is analyzed by using 1–naphthol as a model molecule. Concave sorption isotherms are observed and are well described by the Freundlich isotherm model. The sorption capacity increases as does the concentration of 1–naphthol in the medium and depends on the molar mass of poly(ethylene glycol) used in the synthesis of the hydrogel and on its ï¢â€“cyclodextrin content.For hydrogels with the same content of ï¢â€“cyclodextrin, the sorption capacity decreases with increasing the molar mass of poly(ethylene glycol) used in the synthesis. The higher sorption capacity has been found for the hydrogels prepared from PEG with a molar mass of 400 g/mol and with a ï¢â€“cyclodextrin content between 9–12 % in weight. The sorption capacity of these samples is close to that reported for other hydrogels based on ï¢â€“cyclodextrin.

References

D.B. Stein (editor) “Handbook of Hydrogels: Properties, Preparation & Applicationsâ€, Nova Science Publisher. Hauppauge, N. Y. 2009.

N. A. Peppas (Ed), “Hydrogels in medicine and pharmacyâ€, CRC Press, Boca Raton, FL, 1986.

G. Crini, Prog. Polym. Sci., 2005, 30, 38–70

J. Szejtli “Cyclodextrins and their inclusion complexesâ€, Kluver Academics Publishers. Dordrecht. 1988.

K. A. Connors, Chem. Rev., 1997, 97, 1325–57

G. Crini, M. Morcellet, J. Sep. Sci., 2002, 25, 789–813

A. Romo, F. J. Peñas, J. R. Isasi, I. X. García–Zubiri, G. González–Gaitano, React. Funct. Polym, 2008, 68, 406–413

L.C. Cesteros, C.A. Ramírez, A. Peciña, I. Katime, J. Appl. Polym. Sci., 2006, 102, 1162–1166

L.C. Cesteros, C.A. Ramírez, A. Peciña, I. Katime, Macromol. Chem. Phys., 2008, 208, 1764–1772

I. X. García–Zubiri, G. González–Gaitano, J. R. Isasi, J. Colloid Interfaf. Sci., 2007, 307, 64–70

G. Crini, S. Bertini, G. Torri, A. Naggi, D. Sforzini, C. Vecchi, L. Janus, Y. Lekchiri, M. Morcellet, J. Appl. Polym. Sci., 1998, 68, 1973–1978

G. Crini, N. Morin, J.C. Rouland, L. Janus, M. Morcellet, S. Bertini, Eur. Polym. J., 2002, 38, 1095–1103

I. X. García–Zubiri, G. González–Gaitano, J.R. Isasi, J. Colloid Interface Sci., 2009, 337, 11–18

G. Mocanu, D. Mihai, D. LeCerf, L. Picton, M. Moscovici, J. Appl. Polym. Sci., 2009, 112, 1175–1183

R.P. Schwarzenbach; P.M. Gschwend; D.M. Imboden, “Environmental Organic Chemistryâ€, 2 Ed. Wiley–Interscience, Hoboken (N.J.), 2003

K. Pitchumani, M. Vellayappan, J. Incl. Phenom. Molec. Reco. Chem., 1992, 14, 157–162

L. C. Cesteros, R. González–Teresa, I. Katime, Eur. Polym. J., 2009, 45, 674–679

Downloads

Published

2012-08-09

Issue

Section

Polymer Chemistry