Relative Permittivity of Carbon Dioxide + Ethanol Mixtures prediction by means of Artificial Neural Networks
DOI:
https://doi.org/10.13171/mjc.2.1.2012.10.09.09Abstract
CO2 + ethanol mixtures have a huge scientific interest and enormous relevance for many industrial processes. Obtaining of their chemical and physical properties is a fundamental task. Relative permittivity (ï¥r) of these mixtures is a key property because allows a better knowledge of the structure and the interactions in other media. In this work predictive values of relative permittivity (ï¥r) of carbon dioxide + ethanol mixtures were obtained implementing artificial neural networks (ANNs). They are used successfully in very different fields; therefore it is a very useful tool. In this case the obtained results enhance the ones from the usual multiple linear regression analysis. In both cases mass fraction, pressure and temperature experimental data from a direct capacitance method were used.References
F. S. Oliveira, M.G. Freire, P.J. Carvalho, J.A.P. Coutinho, J.N. Canongia-Lopes, L.P.N. Rebelo, I.M. Marrucho. J. Chem. Eng. Data, 2010, 55, 4514-4520.
B. González, E. J. González, I. DomÃnguez, A. DomÃnguez. Phys. Chem. Liq., 2010, 48, 514-533.
B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzae, M. Mafi, F. Sadeghian, F. J. Chem. Thermodynamics, 2009, 41, 323-329.
F. X. Feitosa, M. L. Rodrigues, C.B. Veloso, L. CeLio, L.J. Cavalcante, M.C.G. Albuquerque, H. B. De Sant’Ana. J. Chem. Eng. Data, 2010, 55, 3909-3914.
L.A. Blanchard, J.F. Brennecke. Ind. Eng. Chem. Res., 2010, 40, 287-292.
J.L. Kendall, D.A. Canelas, J.L. Young, J.M. DeSimone. Chem. Rev., 1999, 99, 543-563.
W. Leitner. Acc. Chem. Res., 2002, 35, 746-756.
L. Teberikler, S. Koseoglu, A. Akgerman. J. Am. Oil Chem. Soc., 2001, 78, 115-120.
J. Ke, C.Mao, M. Zhong, B. Han, H. Yan. J. Supercrit. Fluid., 1996, 9, 82-87.
S.S.T. Ting, D. L. Tomasko, N.R. Foster, S. J. Macnaughton. Ind. Eng. Chem. Res., 1993, 32, 1471-1481.
M. D. Saldaña, C. Zetzl, R. S. Mohamed, G. Brunner. J. Agric. Food Chem., 2002, 50, 4820-4826.
T. Baysal, S. Ersus, D. A. J. Starmans. J. Agric. Food Chem., 2000, 48, 5507-5511.
O. Teschke, G. Ceotto, E.F. De Souza.. Phys. Chem. Chem. Phys., 2001, 3, 3761-3768.
G. C. Franchini, A. Marchetti, M. Tagliazucchi, L. Tassi, G. Tosi. J. Chem. Soc. Faraday Trans., 1991, 87, 2583-2588.
C. J. Chang, C. Y. Day, C. M. Ko, K. L. Chiu. Fluid Phase Equilibr., 1997, 131, 243-258.
Z. Sun, X. Zhang, B. Han, Y. Wu, G. An, Z. Liu, S. Miao, Z. Miao. Carbon 2007, 45, 2589–2596.
B. S. Chun, T. Gordon, T. Wilkinson. Ind. Eng. Chem. Res., 1995, 34, 4371-4377.
W. Eltringham. J. Chem. Eng. Data, 2011, 56, 3363-3366.
L. Jared, J. D. Anderson, T. Welton. D. W. Armstrong. J. Am. Chem. Soc., 2002, 124, 14247-14254.
S. Haykin. Neural Networks: A comprehensive foundation; Prentice Hall: New Jersey, 2008.
J. R. Hilera, V.J. MartÃne. Redes neuronales artificiales. Fundamentos, modelos y aplicaciones; Addisson-Wesley Iberoamericana S.A.: Madrid, 1995.
S. Haykin. Neural Networks and Learning Machines; Pearson Prentice Hall: New Jersey, 2009.
G. Astray, P. V. Caderno, J. A. Ferreiro-Lage, J. F. Galvez, J. C. Mejuto. J. Chem. Eng. Data 2010, 55, 3542-3547.
R. W. Janson, C. Batur, L. Krishna. Ohio J. Sci., 2001, 101, 57-64.
G. Astray, F. J. RodrÃguez-Rajo, J.A. Ferreiro-Lage, J.A. Fernández-González, M.V. Jato, J.C. Mejuto. J. Environ. Monitoring, 2010, 12, 2145-2152.
G. Astray, J. X. Castillo, J.A. Ferreiro-Lage, J.F. Galvez, J.C. Mejuto. Cienc. Tecnol. Aliment., 2010, 8, 79.
H.R. Maier, G.C. Dandy. Environ. Mod. Soft. 2000, 15, 101-124.
P. Araujo, G. Astray, A. Cid, A. Orosa, O. Moldes, B. Soto, J.A. RodrÃguez-Suarez. Electron. J. Environ. Agric. Food Chem., 2011, 10, 1608-1615.
A. Habibi-Yangjeh. Phys. Chem. Liq, 2007, 4, 471-478.
I. Rivals, L. Personnaz. IEEE Trans. Neural Networks, 2000, 24, 9-10.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).