Elaboration and structural characterization of phosphate glasses with composition 37.5Na2O-25[(1-x)MgO-xNiO]-37.5P2O5 (0≤x≤1)
DOI:
https://doi.org/10.13171/mjc7618121512aejskAbstract
Phosphate glasses, with molar compositions 37.5Na2O-25[(1-x)MgO-xNiO]-37.5P2O5 (0 ≤ x ≤ 1), have been prepared using the conventional melt quenching technique. The free nickel glass is colorless while the glasses containing nickel are yellow. The effect of Ni2+ ions on structural and physico-chemical properties of these glasses has been investigated by XRD, DTA, EPR, Raman, FTIR spectroscopies and by density and chemical durability measurements. Substitution of Ni2+ for Mg2+ strengthens the glass network, as shown by the decrease of the molar volume, the increase of the glass transition temperature, and the improvement of the chemical durability. This behavior is a consequence of the replacement of Mg-O bonds by more covalent Ni-O bonds. The glass structure consists of tri-phosphate (P3O10) 5- and di-phosphate (P2O7) 4- groups, and Mg/NiO6 octahedra, with Mg-O-P and Ni-O-P linkages.References
- J. H. Campbell, T. I. Suratwala, Nd-doped phosphate glasses for high-energy/high-peak-power lasers, J. Non- Cryst. Solids, 2000, 263-264, 318-341.
- S. M. Hsu, S. W. Yung, R. K. Brow, W. L. Hsu, C. C. Lu, F. B. Wu, S. H. Ching, Effect of silver concentration on the silver-activated phosphate glass, Mater. Chem. Phys., 2010, 123, 172-176.
- C. Chen, R. He, Y. Tan, B. Wang, S. Akhmadaliev, S. Zhou, J. R. Vazquez de Aldana, L. Hu. F. Chen, Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femto second laser ablation for guided-wave green and red up conversion emissions, Opt. Mater., 2016, 51, 185-189.
- R. K. Brown, D. R. Tallant, Structural design of sealing glasses, J. Non-Cryst. Solids, 1997, 222, 396-406.
- V. Salih, K. Franks, M. James, G. W. Hastings, J. C. Knowles, I. Olsen, Development of soluble glasses for biomedical use. Part 2: The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci. Mater. Med., 2000, 11, 615-620.
- M. Navarro, M. P. Ginebra, J. A. Planell, Cellular response to calcium phosphate glasses with controlled solubility, J. Biomed. Mater. Res., 2003, 67A, 1009-1015.
- K. Franks, V. Salih, J. C. Knowles, I. Olsen, The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. Mater. Sci. Mater. Med., 2002, 13 549-556.
- R. K. Brow, Review: the structure of simple phosphate glasses, J. Non-Cryst. Solids, 2000, 263, 1-28.
- T. Kanazawa, Structural characteristics of MgO-P2O5 glasses, J. Non-Cryst. Solids, 1982, 52, 187-194.
- H. Schlenz, F. Reinauer, R. Glaum, J. Neuefeind, B. Brendebach, J. Hormes, High-energy X-ray diffraction study of Ni-doped sodium metaphosphate glasses, J. Non-Cryst. Solids, 2005, 351, 1014-1019.
- R. Oueslati Omrani, A. Kaoutar, A. El Jazouli, S. Krimi, I. Khattech, M. Jemal, J. J Videau, M. Couzi, Structural and thermochemical properties of sodium magnesium phosphate glasses, J. Alloys Compd., 2015, 632, 766-771.
- J. A. Ribeiro, J. Walker, The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions, Br. J. Pharmacol., 1975, 54, 213-218.
- A. Ghosh, P. Ronner, E. Cheong, P. Khalid, F. M. Matschinsky, The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet β-cells in the isolated perfused rat pancreas, J. Biol. Chem., 1991, 266, 22887-22892.
- A. Thulasiramudu, S. Buddhudu, Optical characterization of Mn2+, Ni2+ and Co2+ ions doped zinc-lead borate glasses, J. Quant. Spectrosc. Radiat. Transfer, 2006, 102, 212-227.
- L. Gomathi Devi, N. Kottam, B. Narasimha Murthy, S. Girish Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of aniline blue under UV/solar light, J. Mol. Catal. A: Chem., 2010, 328, 44-52.
- L. Montagne, G. Palavit, R. Delaval, Effect of ZnO on the properties of (100-x)(NaPO3)-xZnO glasses, J. Non-Cryst. Solids, 1998, 223, 43-47.
- R. Oueslati Omrani, S. Krimi, J. J. Videau, I. Khattech, A. El Jazouli, M. Jemal, Structural investigations and calorimetric dissolution of manganese phosphate glasses, J. Non-Cryst. Solids, 2014, 389, 66–71.
- R. Ait Mouss, S. Krimi, B. Glorieux, I. Khattech, M. Couzi, T. Cardinal, A. El Jazouli, Structural characterization and calorimetric dissolution behavior of Na2O-CuO-P2O5 glasses, J. Non-Cryst. Solids, 2016, 452, 144-152.
- R. Oueslati Omrani, S. Krimi, J. J. Videau, I. Khattech, A. El Jazouli, M. Jemal, Structural and thermochemical study of Na2O-ZnO-P2O5 glasses, J. Non-Cryst. Solids, 2014, 390, 5-12.
- F. Delahaye, L. Montagne, G. Palavit, P. Baillif, J. C. Touray, Dissolution of (50-x)Na2O-xCaO-50P2O5 metaphosphate glasses in different saline solutions: Mechanism and kinetic control, Glastech. Ber. Glass Sci. Technol., 1999. 72(5), 161-166.
- N. Iwamoto, Y. Makino, S. Kasahara, State of Fe3+ ion and Fe3+_F
−interaction in calcium fluorosilicate glasses, J. Non-Cryst. Solids, 1983, 55, 113-124.
- R.P. Sreekanth Chakradhar, G. Sivaramaiah, J. Lakshmana Rao, N.O. Gopal, Fe3+ ions in alkali lead tetraborate glasses - an electron paramagnetic resonance and optical study, Spectrochim. Acta, Part A, 2005, 62, 51-57.
- R. V. S. S. N. Ravikumar, A. V. Chandrasekhar, L. Ramamoorthy, B. J. Reddy, Y. P. Reddy, J. Yamauchi, P. S. Rao, Spectroscopic studies of transition metal doped sodium phosphate glasses, J. Alloys Compd., 2004, 364, 176-179.
- H. B. Premkumar, D. V. Sunitha, H. Nagabhushana, S. C. Sharma, B. M. Nagabhushana, C. Shivakumara, J. L. Rao, R. P. S. Chakradhar, Synthesis, characterization, EPR, photo and thermoluminescence properties of YAlO3: Ni2+ nanophosphors, J. Lumin., 2013, 135,105-112.
- J. E. Pemberton, L. Latifzadeh, J. P. Fletcher, S. H. Risbud, Raman spectroscopy of calcium phosphate glasses with varying calcium oxide modifier concentrations, Chem. Mater., 1991, 3, 195-200.
- G. J. Exarhos, Vibrational studies of glass structure and localized interactions, Chapter 11, In: Structure and bonding in non-crystalline solids, Edited by G. E. Walrafen, A. G. Revez, Plenum Press, New York 1986, pp. 203- 2017.
- A. Rulmont, R. Cahay, M. Liegeois-Duychaerts, P. Tarte, Vibrational spectroscopy of phosphates - some general correlations between structure and spectra, Eur. J. Solid State Inorg. Chem., 1991, 28, 207-219.
- C. V. Ramana, A. Ait-Salah, S. Utsunomiya, U. Becker, A. Mauger, F. Gendron, C. M. Julien, Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy, Chem. Mater., 2006, 18, 3788-3794.
- A. de Andres, J. L. Martinez, Vibrational study of R2BaNiO5 (R=Y, Ho, Er or Tm), NiO6 one-dimensional chains, and Tm2BaNiO5, NiO5 pyramids, Solid State Com., 1992, 82, 931-937.
- E. Libowitzky, Correlation of O-H stretching frequencies and O-H-O hydrogen bond lengths in minerals, Monatsh. Chem., 1999, 130, 1047-1059.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).