High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method
DOI:
https://doi.org/10.13171/mjc8319051210mmAbstract
In this study, hydrothermal synthesis conditions for the formation of (1-x (Na0.5Bi0.5)TiO3-xBaTiO3Â (x=0; 0.03; 0.05; 0.06; 0.07; 0.08 and 0.1)Â compounds were investigated. The process parameters such as the alkaline conditions and heating treatment (temperature, time) as well the influence of the (Na, Bi)/Ba ratio were investigated in detail. The as-prepared NBT powders were characterized by X-ray powder diffraction, scanning electron microscope (SEM) and dielectric measurements. Taking into account NBT behavior draws consideration to phenomena of the ion ordering, coexistence of various phase regions in a crystal lattice, phase transition diffusion and a considerably new phenomenon: the existence of a very high dielectric constant at low frequency. Our result presents a simple preparation route for low-cost and high-purity.References
- M. Rahaman, S.P. Thomas, S. Kuryan, J. Isac, K.T. Varughese, Mechanical properties of ceramic-polymer nanocomposites, Express Polym Lett., 2009, 3, 177-189.
- Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G.Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02 (Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power Capacitors, Applied Physics Letters., 2015, 26, 262-901.
- C. Brosseau, Emerging technologies of plastic carbon nanoelectronics Surf. Coat Tech., 2011, 206, 753-758.
- S.A. Wilson, R.P. Jourdain, Q. Zhang, R.A.
Dorey, C.R. Bowen, M. Willander, C. Johansson, Mater. Sci. Eng., 2007, 56, 1-12.
- S.M. Lukic, S. Cao, J. Bansal, R.C. Rodriguez, F. Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron., 2008, 55, 2258-2267.
- Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, L Progress of electrochemical capacitor electrode materials, International journal of hydrogen energy., 2009, 34, 4889-4899.
- X. Hao, A review on the dielectric materials for high energy-storage application, Journal of Advanced Dielectrics., 2013,03,1330001
- J. Suchanicz, T.V. Kruzina, Dielectric properties, thermal expansion and heat capacity (1-x) Na0.5Bi0.5TiO3-xBaTiO3 single crystals (x= 0, 0.02, 0.025, 0.0325 and 0.05) Mat Sci Eng B., 2013, 178, 889-895
- T. Takenaka, K. Maruyama, K. Sakata, (Bi, Na)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn Appl Phys., 1991, 30, 2236-2239.
- H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography., 1969, 2, 65-71.
- J. RodrÃguez, Recent developments of the program FULLPROF, Commission on powder diffraction (IUCr)., 2001, 26, 12-19.
- Y. Qu, D. Shan, Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics, Materials Science and Engineering., 2005, 121, 148-151.
- Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, Ultra-Wide Temperature Stable Dielectrics Based on Bi0.5Na0.5TiO3-NaNbO3 System, Journal of the American Ceramic Society., 2015, 98, 3119-3126.
- M. Mesrar, T. Lamcharfi, N. Echatoui, F. Abdi, A. Harrach, Investigation of Morphotropic Phase Boundary by Rietveld refinement and Raman Spectroscopy for (1-x)(Na0.5 Bi0.5)TiO3-xBaTiO3 Ceramics, Asian Journal of Chemistry., 2018, 30, 1012-1018.
- L. Liu, Z. Yang, M. Wu, L. Fang, C. Hu, Dielectric Properties of (NaBi(1-x) Kx)0.5 Ti(1-x)NbxO3 Ceramics, J. Alloys Compd., 2010, 507, 196-200.
- C. Xu, D. Lin, K.W. Kwok, Structure Electrical Properties and Depolarization Temperature of (Bi0.5Na0.5)TiO3-BaTiO3 Lead-Free Piezoelectric Ceramics, Solid State Sci., 2008, 10, 934-40.
- P. Vijayeta, R. K. Dwivedi, O. P. Thakur, Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics, Mater. Res. Bull., 2014, 51,189-196.
- N.B. Mahmood, K. Emad, Al-Shakarchi, Dielectric properties of BNT-xBT prepared by hydrothermal process, Journal of Advanced Dielectrics., 2017, 3, 1750019.
- S.R. Kanuru, K. Baskar, R. Dhanasekaran, Synthesis, structural, morphological and electrical properties of NBT-BT ceramics for piezoelectric applications, Ceramics International., 2016, 5, 6054-6064.
- M. Mesrar, T. Lamcharfi, N. Echatoui, F. Abdi, F.Z. Ahjyaje, Hydrothermal Synthesis of Oxide and Carbonate Powders of(1-x) (Na0.5Bi0.5) TiO3 - xBaTiO3 Ceramics, Asian Journal of Chemistry., 2019, 31, 309-316.
- S. Pattipaka, A.R. James, P. Dobbidi, Enhanced dielectric and piezo-electric properties of BNT-KNNG piezoelectric ceramics, Journal of Alloys and Compounds, 2018, 765, 1195-1208.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).