High dielectric constant of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 prepared by the hydrothermal method

Authors

  • Mohammed Mesrar Signals, Systems and Components Laboratory (LSSC), USMBA, FST-Fez, Imouzzer road B.P 2202, Morocco
  • Tajdine Lamcharfi Signals, Systems and Components Laboratory (LSSC), USMBA, FST-Fez, Imouzzer road B.P 2202, Morocco
  • Nor-Said Echatoui
  • Farid Abdi Signals, Systems and Components Laboratory (LSSC), USMBA, FST-Fez, Imouzzer road B.P 2202, Morocco
  • Ahmed Harrach

DOI:

https://doi.org/10.13171/mjc8319051210mm

Abstract

In this study, hydrothermal synthesis conditions for the formation of (1-x (Na0.5Bi0.5)TiO3-xBaTiO3  (x=0; 0.03; 0.05; 0.06; 0.07; 0.08 and 0.1)  compounds were investigated. The process parameters such as the alkaline conditions and heating treatment (temperature, time) as well the influence of the (Na, Bi)/Ba ratio were investigated in detail. The as-prepared NBT powders were characterized by X-ray powder diffraction, scanning electron microscope (SEM) and dielectric measurements. Taking into account NBT behavior draws consideration to phenomena of the ion ordering, coexistence of various phase regions in a crystal lattice, phase transition diffusion and a considerably new phenomenon: the existence of a very high dielectric constant at low frequency. Our result presents a simple preparation route for low-cost and high-purity.

References

- M. Rahaman, S.P. Thomas, S. Kuryan, J. Isac, K.T. Varughese, Mechanical properties of ceramic-polymer nanocomposites, Express Polym Lett., 2009, 3, 177-189.

- Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G.Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02 (Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power Capacitors, Applied Physics Letters., 2015, 26, 262-901.

- C. Brosseau, Emerging technologies of plastic carbon nanoelectronics Surf. Coat Tech., 2011, 206, 753-758.

- S.A. Wilson, R.P. Jourdain, Q. Zhang, R.A.

Dorey, C.R. Bowen, M. Willander, C. Johansson, Mater. Sci. Eng., 2007, 56, 1-12.

- S.M. Lukic, S. Cao, J. Bansal, R.C. Rodriguez, F. Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron., 2008, 55, 2258-2267.

- Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, L Progress of electrochemical capacitor electrode materials, International journal of hydrogen energy., 2009, 34, 4889-4899.

- X. Hao, A review on the dielectric materials for high energy-storage application, Journal of Advanced Dielectrics., 2013,03,1330001

- J. Suchanicz, T.V. Kruzina, Dielectric properties, thermal expansion and heat capacity (1-x) Na0.5Bi0.5TiO3-xBaTiO3 single crystals (x= 0, 0.02, 0.025, 0.0325 and 0.05) Mat Sci Eng B., 2013, 178, 889-895

- T. Takenaka, K. Maruyama, K. Sakata, (Bi, Na)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn Appl Phys., 1991, 30, 2236-2239.

- H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography., 1969, 2, 65-71.

- J. Rodríguez, Recent developments of the program FULLPROF, Commission on powder diffraction (IUCr)., 2001, 26, 12-19.

- Y. Qu, D. Shan, Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics, Materials Science and Engineering., 2005, 121, 148-151.

- Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, Ultra-Wide Temperature Stable Dielectrics Based on Bi0.5Na0.5TiO3-NaNbO3 System, Journal of the American Ceramic Society., 2015, 98, 3119-3126.

- M. Mesrar, T. Lamcharfi, N. Echatoui, F. Abdi, A. Harrach, Investigation of Morphotropic Phase Boundary by Rietveld refinement and Raman Spectroscopy for (1-x)(Na0.5 Bi0.5)TiO3-xBaTiO3 Ceramics, Asian Journal of Chemistry., 2018, 30, 1012-1018.

- L. Liu, Z. Yang, M. Wu, L. Fang, C. Hu, Dielectric Properties of (NaBi(1-x) Kx)0.5 Ti(1-x)NbxO3 Ceramics, J. Alloys Compd., 2010, 507, 196-200.

- C. Xu, D. Lin, K.W. Kwok, Structure Electrical Properties and Depolarization Temperature of (Bi0.5Na0.5)TiO3-BaTiO3 Lead-Free Piezoelectric Ceramics, Solid State Sci., 2008, 10, 934-40.

- P. Vijayeta, R. K. Dwivedi, O. P. Thakur, Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics, Mater. Res. Bull., 2014, 51,189-196.

- N.B. Mahmood, K. Emad, Al-Shakarchi, Dielectric properties of BNT-xBT prepared by hydrothermal process, Journal of Advanced Dielectrics., 2017, 3, 1750019.

- S.R. Kanuru, K. Baskar, R. Dhanasekaran, Synthesis, structural, morphological and electrical properties of NBT-BT ceramics for piezoelectric applications, Ceramics International., 2016, 5, 6054-6064.

- M. Mesrar, T. Lamcharfi, N. Echatoui, F. Abdi, F.Z. Ahjyaje, Hydrothermal Synthesis of Oxide and Carbonate Powders of(1-x) (Na0.5Bi0.5) TiO3 - xBaTiO3 Ceramics, Asian Journal of Chemistry., 2019, 31, 309-316.

- S. Pattipaka, A.R. James, P. Dobbidi, Enhanced dielectric and piezo-electric properties of BNT-KNNG piezoelectric ceramics, Journal of Alloys and Compounds, 2018, 765, 1195-1208.

Downloads

Published

2019-05-12

Issue

Section

Materials Chemistry