DPPH scavenging activity of some Bis-benzimidazole derivatives

Authors

  • Amine Ouaket Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.
  • Fatiha Moughaoui Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.
  • Asmae Laaraibi Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.
  • Souad Hamdouch Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.
  • Mohammed Berrada Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.
  • Noureddine Knouzi Biomolecules and Organic Synthesis Laboratory, University Hassan II of Casablanca, Faculty of Sciences Ben M’sick.

DOI:

https://doi.org/10.13171/mjc8219041101ao

Abstract

As part of our research on substituted benzimidazoles, we are interested in the synthesis of new heterocyclic molecules. This new organic molecule is a subclass of quinolines with a wide variety of biological properties. In order to affect the binding of quinoline to our bis-benzimidazole derivatives, we have chosen the "azo" bond as a means of attachment. To achieve our goal, we investigated different parameters for the reactions to determine the conditions to obtain the best results. This article discusses the antioxidant activity of our molecules using the DPPH method.

References

- A. Ouaket, S. Hamdouch, F. Moughaoui, Z. Anbaoui, M. Berrada, A. Bennamara, N. Knouzi, Synthesis and Characterization of 2, 2'-Alkyl/Aryl- Bis(Quinoline-8-Ol-5-Azobenzimidazole), IJPPR.Human, 2018, 11(2), 231-238.

- A. G. Montalban, Quinolines and Isoquinolines: Heterocycles in Natural Product Synthesis; ed. By K. C. Majumdar, S. K. Chattopadhyay; Wiley-VCH: New York, 2011, pp. 299- 339.

- (a) D. Lednicer, Membered heterocycles: The Organic Chemistry of Drug Synthesis; ed. John Wiley & Sons: Hoboken, New Jersey, 2007, Vol.7, pp. 84-216.

(b) V. Lee, S. J. Hecker, Antibiotic resistance versus small molecules, the chemical evolution, J. Med. Res. Rev., 1999, 19, 521-542

- I. B. Onyeachua, I. B. Obot, A. A. Sorour, M. I. Abdul-Rashid, Green corrosion inhibitor for oilfield application I: Electrochemical assessment of 2-(2-pyridyl) benzimidazole for API X60 Steel under sweet environment in NACE brine ID196, Corrosion Science, 2019, 150, 183-193.

- R. Walia, M. Hedaitullah, S. Farha Naaz, K. Iqbal, H. S. Lamba, Benzimidazole derivatives -An overview, IJRPC, 2011, 1(3), 565-574.

- S. Gurvinder, K. Maninderjit, C. Mohan, Benzimidazoles: The latest information on biological activities, IRJP, 2013, 4(1), 82-87.

- N. Srestha, J. Banerjee, S. Srivastava, A review on chemistry and biological significance of benzimidazole nucleus, IOSR Journal of Pharmacy, 2014, 4(12), 28-41.

- J. B. Wright, The Chemistry of the Benzimidazoles, Chem. Rev., 1951, 48(3), 397-541.

- U. Kalidhar, A. Kaur, An overview on Some Benzimidazole and Sulfonamide derivatives with antimicrobial activity, RJPBCS, 2011, 2(4), 1116-1135.

- E.M. Essassi, L'utilisation des l,5-benzodiazepines en synthese heterocyclique, Bull. SOC. Chim. Belg., 1994, 103(11), 680-686.

- Y. Okamoto, K. Takagi, Chemistry of 4-amino-1H-1,5-benzodiazepine-3-carbonitrile, J. Heterocyclic Chem., 1987, 24, 885-891.

- K. Attar, H. Camara, M. Benchidmi, E. M. Essassi, B. Garrigues, Synthèse de nouveaux dérivés du 1-hydroxyindole et du pyrazole. Comptes Rendus Chimie, 2002, 5(6-7), 551-557.

- D. S. Vanvliet, P. Gillespie, J. J. Scicinski, Rapid one-pot preparation of 2-substituted benzimidazoles from 2-nitroanilines using microwave conditions, Tetrahedron Lett., 2011, 46(39), 6741-6743.

- S. J. Teague, S. Barber, S. King, L. Stein, Synthesis of benzimidazole-based JNK inhibitors, Tetrahedron Lett., 2005, 46(27), 4613-4616.

- A. Bali, Y. Bansal, M. Sugumaran, J. S. Saggu, P. Balakumar, G. Kaur, G. Bansal, A. Sharma, M. Singh, Design, synthesis, and evaluation of novelly substituted benzimidazole compounds as angiotensin II receptor antagonists, Bioorg. Med. Chem. Lett., 2005, 15(17), 3962-3965.

- R. T. Stibrany, M. V. Lobanov, H. J. Schugar, J. A. Potenza, A Geometrically Constraining Bis(benzimidazole) Ligand and Its Nearly Tetrahedral Complexes with Fe(II) and Mn(II), Inorg. Chem., 2004, 43(4), 1472-1480.

- M. J. S. Moreno, A. F. Bottello, R. B. Gomez-Coca, R. Griesser, J. Ochocki, A. Kotynski, J. N. Gutierrez, V. Moreno, H. Sigel, Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution. Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect, Inorg. Chem., 2004, 43(4), 1311-1322.

- F. Arjmand, B. Mohani, S. Ahmad, Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex, Eur. J Med. Chem., 2005, 40(11), 1103-1110.

- Y. Chew, Y. Lim, Evaluation and Comparison of Antioxidant Activity of Leaves, Pericarps and Pulps of Three Garcinia Species in Malaysia, Free Radicals and Antioxidants, 2018, 8(2), 130-134.

- G. Persaud, F. F. Cantwell, Determination of free magnesium ion concentration in aqueous solution using 8-hydroxyquinoline immobilized on a nonpolar adsorbent, Anal. Chem., 1992, 64(1), 89-94.

- M.S. Blois, Antioxidant Determinations by the Use of a Stable Free Radical, Nature, 1958, 181, 1199-1200.

- W. Brand-Williams, M.E.Cuvelier, C.Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Science and Technology, 1995, 28(1), 25-30.

- L. Majhenič, M. Å kerget, Ž. Knez, Antioxidant and antimicrobial activity of guarana seed extracts, Food Chemistry, 2007, 104(3) 1258-1268.

Downloads

Published

2019-04-11

Issue

Section

Biological Chemistry