K-10 montmorillonite: An efficient and reusable catalyst for selective oxidation of aldehydes in the presence of dioxygen
DOI:
https://doi.org/10.13171/mjc851907052ieaAbstract
A commercial montmorillonite clay catalyst, K-10 montmorillonite, was tested for catalytic oxidation of aldehydes in the presence of molecular oxygen under mild conditions. K-10 montmorillonite catalysed the oxidation of aldehydes with good activity and excellent selectivity toward the formation of the corresponding acids. The effects of the amount of catalyst, temperature and solvent on the catalytic activity were investigated. Remarkably, this catalyst was reusable without any appreciable loss in activity and selectivity.References
- X.T. Zhou, H. B. Ji, Q. L. Yuan, J. C. Xu, L. X. Pei, L. F. Wang, Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (III) meso-tetraphenylporphyrin chloride under ambient conditions, Chin. Chem. Lett., 2007, 18, 926-928.
- F. F. Bamcharram, M. Roshani, M. H. Alizadeh, H. Razavi, M. Moghayadi, J. Brazil, Novel oxidation of aromatic aldehydes catalyzed by Preyssler's anion, [NaP5W30O110]14-, Chem. Soc., 2006, 17, 505-509.
- R. Bernini, A. Coratti, G. Provenzano, G. Fabrizi, D. Tofani, Oxidation of aromatic aldehydes and ketones by H2O2/CH3ReO3 in ionic liquids: an efficient catalytic reaction to achieve dihydric phenols, Tetrahedron, 2005, 61, 1821-1825.
- A. Corma, V. Fornés, S. Iborra, M. Mifsud, M. Renz, One-pot synthesis of phenols from aromatic aldehydes by Baeyer-Villiger oxidation with H2O2 using water-tolerant Lewis acids in molecular sieves, J. Catal., 2004, 221, 67-76.
- H. Qian, L.-X. Shao, X. Huang, Polystyrene-bound phenylseleninic acid: catalytic oxidation of aldehydes to carboxylic acids with hydrogen peroxide, J. Chem. Res-S., 2002, 514-515.
- G. J. T. Brink, J. M. Vis, I.W.C. E. Arends, R. A. Sheldon, Selenium-Catalyzed Oxidations with Aqueous Hydrogen Peroxide. 2. Baeyer-Villiger Reactions in Homogeneous Solution, J. Org. Chem., 2001, 66, 2429-2433.
- K. Sato, M. Hyodo, J. Takagi, M. Aoki, R. Noyori, Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide and metal-free procedure, Tetrahedron. Lett., 2000, 41, 1439-1442.
- K. H. Chung, B. C. Moon, C. H. Lim, J. P. Kim, J. H. Lee, D.Y. Chi, Oxidation of Aromatic Aldehydes with Tetrabutylammonium Fluoride: Competition with the Cannizzaro Reaction, Korean. Chem. Soc., 2006, 27, 1203-1205.
- D. Basavaiah, D. S. Sharada, A.Veerendhar, Organo-base mediated Cannizzaro reaction, Tetrahedron. Lett., 2006, 47, 5771-5774.
- M. S. Abaee, R. Shariï¬, M. M. Mojtahedi, Room-Temperature Cannizzaro Reaction under Mild Conditions Facilitated by Magnesium Bromide Ethyl Etherate and Triethylamine, Org. Lett., 2005, 7, 5893-5895.
- P. Appukkuttan, W. Dehaen, E. Van der Eycken, Transition-Metal-Free Sonogashira Type Coupling Reactions in Water, Eur. J. Org. Chem., 2003, 4713-4716.
- M. Meciarova, V. Polackova, S. Toma, The Effect of Microwave and Ultrasonic Irradiation on the Reactivity of Benzaldehydes under
Al2O3, Ba(OH)2, and K2CO3 Catalysis, Chem. Pap., 2002, 56, 208-213.
- B.V. S. Reddy, R. Srinivas, J. S. Yadav,
T. Ramalingam, KF-Al2O3 Mediated Cross-Cannizzaro Reaction Under Microwave Irradiation, Synth. Commun., 2002, 32, 219-223.
- N. Barooah, S. Sharma, B. C. Sharma, J. B. Baruah, Catalytic oxidative reactions of organic compounds by nitrogen-containing copper complexes, Appl. Organometal. Chem., 2004, 18, 440-445.
- T. Mallat, A. Baiker, Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts, Chem. Rev., 2004, 104, 3037-3058.
- A. N. Kharat, P. Pendleton, A. Badalyan,
M. Abedini, M. M. Amini, Oxidation of aldehydes using silica-supported Co(II)-substituted heteropolyacid, J. Mol. Catal. A: Chem., 2001, 175, 277-283.
- A. Anjum, P. Srinivas, An Efficient and Mild Procedure for the Preparation of Benzoic Acids via Oxidation of Aromatic Carbonyl Compounds by Employing N-Bromoimides and Mercuric Acetate System, Chem. Lett., 2001, 30, 900-901.
- M. Brzaszcz, K. Kloc, M. Maposah,
J. Mlochowski, Selenium (IV) Oxide Catalyzed Oxidation of Aldehydes to Carboxylic Acids with Hydrogen Peroxide, Synth. Commun., 2000, 30, 4425-4434.
- J. Howarth, Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6, Tetrahedron. Lett., 2000, 41, 6627-6629.
- (a) S. Samajdar, F. F. Becker, B. K. Banik, Surface-Mediated Highly Efficient Oxidation of Alcohols By Bismuth Nitrate, Synth. Commun., 2006, 31, 2691-2695.
(b) M. Michela Dell’Annaa, M. Mali, P. Mastrorilli, P. Cotugnoc, A. Monopoli, Oxidation of benzyl alcohols to aldehydes and ketones under air in water using a polymer-supported palladium catalyst, J. Mol. Catal. A: Chem., 2014; 386, 114-119.
- J. Farkas, S. Bekassy, J. Madarasz, F. Figueras, Selective oxidation of benzylic alcohols to aldehydes with metal nitrate reagents catalyzed by BEA zeolites or clays, New J. Chem., 2002, 26, 750-754.
- C. Mukhopadhyay, A. Datta, Bismuth(III) nitrate pentahydrate: a stoichiometric reagent for microwave induced mild and highly efficient aerial oxidation of aromatic aldehydes under solvent-free conditions, Catal. Commun., 2008, 9, 2588-2592.
- T. G. Carrell, S. Cohen, G. C. Dismukes, Oxidative catalysis by Mn4O46+ cubane complexes, J. Mol. Catal. A: Chem., 2002, 187, 3-15.
- G. J. T. Brink, J. M. Vis, I.W.C. E. Arends,
R. A. Sheldon, Selenium catalysed oxidations with aqueous hydrogen peroxide. Part 3: Oxidation of carbonyl compounds under mono/bi/triphasic conditions, Tetrahedron, 2002, 58, 3977-3983.
- S. Biella, L. Prati, M. Rossi, Gold-catalyzed the oxidation of aldehydes in the liquid phase, J. Mol. Catal. A: Chem., 2003, 197, 207-2012.
- H. B. Ji, D. G. He, J. Song, Y. Qian, Clean Aerobic Liquid Oxidation of Aldehydes with Solid Catalyst, Chin. Chem. Lett., 2004, 15, 1241-1244.
- I. El Amrani, A. Atlamsani, M. Dakkach,
M. RodrÃguez, I. Romero, S. Amthiou, Efficient and selective oxidation of aldehydes with dioxygen catalysed by vanadium-containing heteropolyanions, C. R. Chim., 2017, 20, 888-895.
- R. A. Sheldon, J. Dakka, Heterogeneous catalytic oxidations in the manufacture of fine chemicals, Catal. Today., 1994, 19, 215-245.
- G. Centi, M. Misono, New possibilities and opportunities for basic and applied research on selective oxidation by solid catalysts: an overview, Catal. Today., 1998, 41, 287-296.
- R. A. Sheldon, R. S. Downing, Heterogeneous catalytic transformations for environmentally friendly production, Appl. Catal., A, 1999, 189, 163-183.
- J. S. Rafelt, J. H. Clark, Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis, Catal. Today, 2000, 57, 33-44.
- W. F. Hoelderich, Environmentally benign manufacturing of fine and intermediate chemicals, Catal. Today, 2000, 62, 115-130.
- J. H. Clark, C. N. Rhodes, Clean Synthesis using Porous Inorganic Solid Catalysts and Supported Reagents, Royal Society of Chemistry, Cambridge, 2000.
- S. Kanagasabapathy, A. Sudalai, B. C. Benicewicz, Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters, Tetrahedron Lett., 2001, 42, 3791-3794.
- D. Habibi, O. Marvi, Montmorillonite K-10 supported the one-pot synthesis of some symmetric diimides and 3a,4,7,7a-tetrahydro isoindole-1,3-dione derivatives under solvent-free conditions using microwaves, J. Serb. Chem. Soc., 2005, 70, 579-583.
- T. K. Huang, R. Wang, L. Shi, X. X. Lu, Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water, Catal. Commun., 2008, 9, 1143-1147.
- M. V. Reddy, G. C. S. Reddy, Y. T. Jeong, Microwave-assisted, montmorillonite K-10 catalyzed the three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions, Tetrahedron, 2012, 68, 6820-6828
- T. R. Reddy, G. R. Reddy, L. S. Reddy, C. L.T. Meda, K.V. L. Parsa, K. S. Kumar, Y. Lingappa, M. Pal, Montmorillonite K-10 catalyzed the green synthesis of 2,6-unsubstituted dihydropyridines as potential inhibitors of PDE4, Eur. J. Med. Chem., 2013, 62, 395-404.
- T. Huang, R. Wang, L. Shi, X. Lu, Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water, Catal. Commun., 2008, 9, 1143-1147.
- M. D. Nikalje, P. Phukan, A. Sudalai, Recent advances clay-catalyzed organic transformations, Org. Prep. Proced. Int., 2000, 32, 1-40.
- J. F. Roudier, A. Foucaud, Clay catalyzed ene-reactions. Synthesis of γ-lactones, Tetrahedron Lett., 1984, 25, 4375-4378.
- S. Naskar, P. Paira, R. Paira, S. Mondal,
A. Maity, A. Hazra, K. Sahu, P. Saha, S. Banerjee, P. Luger, M. Webe, N. Mondal, Montmorillonite K-10 clay catalyzed solvent-free synthesis of bis-indolylindane1,3-dione,2-(10,30-dihydro-1H-[2,30]biindolyl-20-ylidene)-indan-1,3-dione and bisindolylindeno[1,2-b]-quinoxaline under microwave irradiation, Tetrahedron, 2010, 66, 5196-5203.
- O. Sieskind, P. Albrecht, Synthesis of alkylbenzenes by Friedel-Crafts reactions catalysed by K10-montmorillonite, Tetrahedron Lett., 1993, 34, 1197-1200.
- D. Bahulayan, S. K. Das, J. Iqbal, Montmorillonite K10 Clay: An Efficient Catalyst for the One-Pot Stereoselective Synthesis of β-Acetamido Ketones, J. Org. Chem., 2003, 68, 5735-5738.
- K. P. Naicker, A. Lalitha, K. Pitchumani,
C. Srinivasan, Clay-catalysed dealkylation of organic sulfides, Catal. Lett., 1998, 56, 237-239.
- T. S. Li, J. X. Wang, X. J. Zheng, Simple synthesis of allobetulin, 28- oxvallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids, J. Chem. Soc., Perkin Trans.1, 1998, 3957-3965.
- V. A. Bushmelev, A. M. Genaev, V. G. Shubin, Oxidative demethylation of 4-methyl phenols to 1, 4-benzoquinones with hydrogen peroxide, catalyzed by K10 montmorillonite, Russ. J. Org. Chem., 1999, 30, 62-66.
- H. Ohmura, G. D. Smyth, K. Mikami, The first example of (2, 5) ene cyclization: Solid acid-catalyzed oxonium-ene reaction, J. Org. Chem., 1999, 64, 6056-6059.
- J. H. Poupaert, J. Bukuru, A. Gozzo, Clay (Montmorillonite K10) Catalysis of the Michael Addition of α,β-Unsaturated Carbonyl Compounds to Indoles: The Beneficial Role of Alcohols, Monatsh. Chem., 1999, 130, 929-932.
- N. S. Shaikh, A. S. Gajare, V. H. Deshpande, A.V. Bedekar, A mild procedure for the clay catalyzed selective removal of the tert-butoxycarbonyl protecting group from aromatic amines A mild procedure for the clay catalyzed selective removal of the tert-butoxycarbonyl protecting group from aromatic amines, Tetrahedron Lett., 2000, 41, 385-387.
- M. Avalos, R. Babiano, J. L. Bravo, P. Cintas, J. L. Jiménez, J. C. Palacios, Clay-catalyzed solventless addition reactions of furan with α, β-unsaturated carbonyl compounds, Tetrahedron Lett., 1998, 39, 9301-9304.
- A. Bakandritsos, A. Simopoulos, D. Petridis, Iron Changes in Natural and Fe(III) Loaded Montmorillonite during Carbon Nanotube Growth, Nanotechnology, 2006, 17, 1112-1117.
- P. Pushpaletha, S. Rugmini, M. Lalithambika, Correlation between surface properties and catalytic activity of clay catalysts, Appl. Clay Sci., 2005, 30, 141-153.
- I. El Younssi, T. Rhadi, A. Atlamsani, J-P, Quiseit, F. Herbst, K. Draoui, K-10 montmorillonite: An efï¬cient and reusable catalyst for the aerobic CC bond cleavage of α-substituted ketones, J. Mol. Catal. A: Chem., 2012; 363, 437-445.
- R. Giannandrea, P. Mastrorilli, C. F. Nobile,
G. P. Suranna, Aerobic oxidation of aldehydes, ketones, sulfides, alcohols and alkanes catalysed by polymerizable, α-ketoesterate complexes of iron(III), nickel(II) and cobalt(II), J. Mol. Catal., 1994, 94, 27-36.
- C. Milone, M. Dhanagopal, S. Santangelo,
M. Lanza, S. Galvagno, G. Messina, K10 Montmorillonite Based Catalysts for the Growth of Multiwalled Carbon Nanotubes through Catalytic Chemical Vapor Deposition, Eng. Chem. Res., 2010, 49, 3242-3249.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).