Synthesis of some poly (N-2-vinyl pyrrolidone-co-metha crylamide)s as model carriers of anilines. Study of the release of anilines in aqueous heterogeneous medium of pH=1.2 at 37°C

Authors

  • Ilham Abdelmalek Physical and Organic Macromolecular Chemistry Laboratory (LCOPM) Faculty of Science, University "Djillali Liabès" of Sidi Bel-Abbes, LP 89, Algeria
  • Abderrezzak Mesli Physical and Organic Macromolecular Chemistry Laboratory (LCOPM) Faculty of Science, University "Djillali Liabès" of Sidi Bel-Abbes, LP 89, Algeria
  • Nacer Boudouaia Physical and Organic Macromolecular Chemistry Laboratory (LCOPM) Faculty of Science, University "Djillali Liabès" of Sidi Bel-Abbes, LP 89, Algeria
  • Nafa Chafi Physical and Organic Macromolecular Chemistry Laboratory (LCOPM) Faculty of Science, University "Djillali Liabès" of Sidi Bel-Abbes, LP 89, Algeria
  • Gerard Simonneaux Chemical Sciences Laboratory of Rennes UMR CNRS 6226 University of Rennes-1, 35042 Rennes, France

DOI:

https://doi.org/10.13171/mjc.1.2.2011.08.09.12

Abstract

Four secondary amides have been prepared by the Schotten-Baumann reaction between model anilines (Pa1-4: p-XC6H4NH2: X1: H; X2:CH3; X3:COCH3; X4: CN) and methacryloyl chloride using aqueous THF/NaOH mixture at 0°C. MS1, MS2 and MS4 liquid monomers are obtained whereas MS3 is a solid monomer. Mass radical copolymerization of the different monomers (MS1-4) with N-vinyl-2-pyrrolidone yields to the corresponding four copolymers. All the monomers have been characterized by IR, 1H and 13C NMR. The (CP1-4) have been characterized by IR spectra, microanalysis, Tg ° and Mv. The kinetics of aniline delivery to give anilinium cations (PaH+)1-4 from solid MS3 and CP1-4 dispersed in water (pH= 1.2, 37°C) showed that aniline delivery from the different supports is controlled by a diffusion process and not the rate of amide hydrolysis. The amount (%) of free anilinium cations is inversely proportional to the molecular weight of polymeric supports. Accordingly, the monomer MS3 gave the largest amount of free anilinium cations (PaH+) 1-4

References

- R. Duncan, J. Kopecek, Soluble synthetic polymers as potential drug carriers. In: Advances in polymer science, Vol 57; ed. by K. Dusek; Springer-Verlag: Berlin,Heidelberg, 1984, pp.51.

- A. Zaffaroni, Biomedical and dental application of polymers. In: Polymer science and technology, Vol 14; ed. by CG. Gebelin and FK. Koblitz; Plenum Press: New-York, 1981,pp.283.

- A. Droin, C. Chaumat, M. Rollet, J. L. Taverdet, J. M. Vergnaud, Int. J. Phar., 1985, 27,233.

- E. W. Neuse, Metal-Based Drugs, 2008, Hindawi Publishing Corporation, Volume 2008, Article ID 469531, p.1-19. doi : 10. 1155/2008/469531.

- H. Kamada, Y. Tsutsumi, Y. Yoshioka, Y. Yamamoto, H. Kodaira, S. Tsunoda, T. Okamoto, Y. Mukai, H. Shibata, S. Nagawa, T. Mayumi, Clinical Cancer Research, 2004, 10, 2545.

- K. Heilmann, Therapeutic Systems, Rate Controlled Drug Delivery, Concept and Development, 1984, New-York: Thieme Stratton

- Y. W. Chien, Novel Drug Delivery Systems: Fundamental Development Concepts and Biomedical Assessments. New-York: Marcel Dekker; 1982.

- H. Ringsdorf, J. Polym. Sci. Symp., 1975, 51, 135.

- J. Kopecek, K. Ulbrich, Prog. Polym. Sci., 1983; 9, 1.

- J. Kopecek, Recent Advances in Drug Delivery Systems, New-York: Plenum Press; 1984,

- R. Duncan, JB Lioyd, P. Rejmanova, J. Kopecek, Makromol Chem, 1985, 9, 3.

- J. Kopecek, P. Rejmanova, V. Chytry, Makromol Chem Suppl, 1981, 182, 799.

- B. Z. Weiner, M. Tahan, A. Zilkha, J. Med. Chem., 1972, 15 (14), 410.

- B. Rihova, K. Ulbrich, J. Kopecek, P. A. Mancal, Folia Microbiol, 1983, 28, 217.

- B. Z. Weiner, A. Zilkha, J. Med. Chem., 1973, 16, 573.

- B. Z. Weiner, A. Zilkha, G. Porath, F. Grunfeld, Eur. J. Med. Chem., 1976, 11, 525.

- G. Bauduin, D. Bondon, Y. Pietrasanta, B. Pucci, F. Grunfeld, Eur. J Med. Chem., 1979, 14, 119.

- G. Bauduin, D. Bondon, J. Martel, Y. Pietrasanta, B. Pucci, J. J. Serrano, C. François, Makromol. Chem. 1981, 182, 2589.

- G. Bauduin, D. Bondon, J. Martel, Y. Pietrasanta, B. Pucci, Makromol. Chem., 1981, 182, 773.

- H. A. Ravin, A. M. Seligman, J. Fine, New Engl. J. Med., 1952, 247, 921.

- W. C. Hueper, Archs. Path., 1959, 67, 589.

- F. Bischoff, J. Chin. Chem. Soc., 1972, 18 (9), 869.

- A. Nganié, D. Derouet, D. Fernandez, C. Pinazzi, Eur. Polym. J., 1986, 22(6), 431.

- T. Vandamme, D. Poncelet and P. Subra-Paternault, Microencapsulation; ed. by TEC and DOC; Lavoisier: Paris, 2007, pp.5-53.

- M. Pettiti, M. Vanni, A. A. Barresi, Chem Engineering Research and Design, 2008, 86,

- L. Simon, Mathematical Biosciences, 2009, 217, 151.

- J. M. Chan, L. Zhang, K. P. Yuet, G. Liao, J.W. Rhee, Langer R. Biomaterials, 2009, 30, 1627.

- G. Rodrigues da Silva, C. Jr. Armando da Silva Cunha, E. Ayres, R. L. Oréfice, J. Mater. Sci. : Mater. Med., 2009, 20, 481.

- J. P. Monthéard, J. M. Vergnaud, N. Chafi, Eur. Polym. J., 1989; 25 (11), 1103.

- N. Chafi, M. Kolli, J. M. Vergnaud, J. P. Monthéard, J. Appl. Polym. Sci., 1991, 43, 1837.

- N. Chafi, A. Benghalem, A. Mesli, Eur. Polym. J., 2003, 39, 1063.

- a) C. Schotten, Chem. Ber., 1884, 19, 2544.

b) E. Baumann, Chem. Ber., 1886, 21, 3218.

- J. Cranck, The Mathematics of Diffusion; 2nd ed. Oxford: Clarendon, 1975, pp. 85.

Downloads

Published

2011-09-08

Issue

Section

Polymer Chemistry