Stereoselective synthesis of alkyl pyranosides on a laboratory scale
DOI:
https://doi.org/10.13171/mjc02003181278rcAbstract
The one-pot reaction of per-acetylated glycopyranosyl bromides with alcohols in light-protected flask leads to the stereoselective synthesis of deacetylated alkyl pyranosides in good yields.References
- J. Bestard-Escalas, A. Maimó-Barceló, K. Pérez-Romero, D. H. Lopez, G. Barceló-Coblijn, Ins and Outs of Interpreting Lipidomic Results, J. Mol. Biol., 2019, 43, 5039-5062.
- M. Cuperlovic-Culf, A. Badhwar, Recent advances from metabolomics and lipidomics application in alzheimer's disease inspiring drug discovery, Expert Opin. Drug Discovery, 2020, 15, 319-331.
- M. M. Khan, O. Ernst, N. P. Manes, B. L. Oyler, I. D. C. Fraser, D. R. Goodlett, A. Nita-Lazar, Multi-Omics Strategies Uncover Host-Pathogen Interactions, ACS Infect. Dis., 2019, 5, 493-505.
- T. Porta Siegel, K. Ekroos, S. R. Ellis, Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics, Angew. Chem., Int. Ed., 2019, 58, 6492-6501.
- V. V. Smirnov, E. A. Egorenkov, T. N. Myasnikova, A. E. Petukhov, V. I. Gegechkori, A. M. Sukhanova, G. V. Ramenskaya, Lipidomic analysis as a tool for identifying susceptibility to various skin diseases, MedChemComm, 2019, 10, 1871-1874.
- A. d. J. Cortés-Sanchez, H. Hernández-Sánchez, M. E. Jaramillo-Flores, Biological activity of glycolipids produced by microorganisms: New trends and possible therapeutic alternatives, Microbiol. Res., 2013, 168, 22-32.
- Y. Ishibashi, A. Kohyama-Koganeya, Y. Hirabayashi, New insights on glucosylated lipids: Metabolism and functions, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2013,1831, 1475-1485.
- M. Schombs, J. Gervay-Hague, Glycochemistry: overview and progress, Glycochemical Synthesis: Strategies and Applications, 2016, 1-34.
- A. Loesche, J. Wiemann, Z. Al Halabi, J. Karasch, W. Sippl, R. Csuk, Unexpected AChE inhibitory activity of (2E) α,β-unsaturated fatty acids, Bioorg. Med. Chem. Lett., 2018, 28, 3315-3319.
- P. Dzubak, S. Gurska, B. K., D. Uhrikova, N. Kanjakova, S. Combet, T. Klunda, M. Kolar, M. Hajduch, M. Polakova, Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics, Carbohydr. Res., 2020, 488, 107905.
- S. X. Song, M. L. Wu, X. P. He, Y. B. Zhou, L. Sheng, J. Li, G. R. Chen, The anomeric mixture of some O-galactolipid derivatives is more toxic against cancer cells than either anomer alone, Bioorg. Med. Chem. Lett., 2012, 22, 2030-2032.
- B. J. Boyd, C. J. Drummond, I. Krodkiewska, F. Grieser, How Chain Length, Headgroup Polymerization, and Anomeric Configuration Govern the Thermotropic and Lyotropic Liquid Crystalline Phase Behavior and the Air-Water Interfacial Adsorption of Glucose-Based Surfactants, Langmuir, 2000, 16, 7359-7367.
- A. Bilkova, E. Paulovicova, L. Paulovicova, M. Polakova, Antimicrobial activity of mannose-derived glycosides, Monatsh. Chem., 2015, 146, 1707-1714.
- C. Dias, A. Martins, A. Pelerito, M. C. Oliveira, M. Contino, N. A. Colabufo, A. P. Rauter, Assessing the Optimal Deoxygenation Pattern of Dodecyl Glycosides for Antimicrobial Activity Against Bacillus anthracis, Eur. J. Org. Chem., 2019, 2224-2233.
- C. Dias, A. P. Rauter, 2-Deoxy glycosides as innovative antimicrobial and neuroprotective molecules, American Chemical Society, 2016, pp. ICS-158.
- F. V. M. Silva, M. Goulart, J. Justino, A. Neves, F. Santos, J. Caio, S. Lucas, A. Newton, D. Sacoto, E. Barbosa, M. S. Santos, A. P. Rauter, Alkyl deoxy-arabino-hexopyranosides: Synthesis, surface properties, and biological activities, Bioorg. Med. Chem., 2008, 16, 4083-4092.
- H. Luders, Synthesis of alkyl glucosides and alkyl polyglucosides, Surfactant Sci. Ser., 2000, 91, 19-75.
- J. Nowicki, M. Moscipan, E. Nowakowska-Bogdan, J. Woch, Micellar Catalysis in Fischer Glycosidation: En Route to Diverse Functional Glycosides, ChemistrySelect, 2019, 4, 13841-13845.
- W. Szeja, Glycosidation of sugars in the Fischer reaction, Wiad. Chem., 1979, 33, 7-23.
- S. Traboni, E. Bedini, M. Giordano, A. Iadonisi, Three Solvent-Free Catalytic Approaches to the Acetal Functionalization of Carbohydrates and Their Applicability to One-Pot Generation of Orthogonally Protected Building Blocks, Adv. Synth. Catal., 2015, 357, 3562-3572.
- S. N. Baytas, Q. Wang, N. A. Karst, J. S. Dordick, R. J. Linhardt, Solid-phase chemoenzymatic synthesis of C-sialosides, J. Org. Chem., 2004, 69, 6900-6903.
- W. Huang, S. Groothuys, A. Heredia, B. H. M. Kuijpers, F. P. J. T. Rutjes, D. F. L. van, L. X. Wang, Enzymatic glycosylation of triazole-linked GlcNAc/Glc-peptides: synthesis, stability and anti-HIV activity of triazole-linked HIV-1 gp41 glycopeptide C34 analogues, Chembiochem, 2009, 10, 1234-1242.
- S. Muthana, H. Cao, X. Chen, Recent progress in chemical and chemoenzymatic synthesis of carbohydrates, Curr. Opin. Chem. Biol., 2009, 13, 573-581.
- E. L. Smith, J. P. Giddens, A. T. Iavarone, K. Godula, L. X. Wang, C. R. Bertozzi, Chemoenzymatic Fc Glycosylation via Engineered Aldehyde Tags, Bioconjugate Chem., 2014, 25, 788-795.
- H. Akita, K. Kurashima, T. Nakamura, K. Kato, Chemo-enzymatic syntheses of naturally occurring β-glucosides, Tetrahedron: Asymmetry, 1999, 10, 2429-2439.
- P. Kovac, R. B. Taylor, C. P. J. Glaudemans, General synthesis of (1 .fwdarw. 3)-.beta.-D-galacto oligosaccharides and their methyl .beta.-glycosides by a stepwise or a blockwise approach, J. Org. Chem., 1985, 50, 5323-5333.
- W. Koenigs, E. Knorr, Über einige Derivate des Traubenzuckers und der Galactose, Ber. Dtsch. chem. Ges., 1901, 34, 957-981.
- G. Capozzi, S. Menichetti, C. Nativi, Selective glycosidation reactions and their use in medicinal chemistry, Methods Princ. Med. Chem., 2000, 7, 221-259.
- P. J. Garegg, P. Konradsson, I. Kvarnstroem, T. Norberg, S. C. T. Svensson, B. Wigilius, Studies on Koenigs-Knorr glycosidations, Acta Chem. Scand., Ser. B, 1985, 39, 569-577.
- K. Krohn, in Orgaic Synthesis Highlights (J. Mulzer, H.J. Altenbach, M. Braun, K. Krohn, H.U. Reissig, Eds), Synthesis of O-glycosides, VCH, Weinheim 1991, 277-285.
- K. Nakayama, K. Higashi, T. Soga, K. Uoto, T. Kusama, Zinc triflate-promoted glycosidation: synthesis of lipid A disaccharide intermediates, Chem. Pharm. Bull., 1992, 40, 2909-2912.
- Y. Singh, A. V. Demchenko, Defining the Scope of the Acid-Catalyzed Glycosidation of Glycosyl Bromides, Chem. Eur. J., 2019, 26, 1042-1051.
- Z. Wimmer, L. Pechova, D. Saman, Koenigs-Knorr synthesis of cycloalkyl glycosides, Molecules, 2004, 9, 902-912.
- R. U. Lemieux, W. P. Shyluk, A new synthesis of β-glucopyranosides, Can. J. Chem., 1953, 31, 528-535.
- H. Hönig, H. Weidmann, Simple synthesis of methyl-β-D-glucopyranoside, Synthesis, 1975, 804.
- F. Dasgupta, P. P. Singh, H. C. Srivastava, Acetylation of carbohydrates using ferric chloride in acetic anhydride, Carbohydr. Res., 1980, 80, 346-349. https://doi.org/10.1016/S0008-6215(00)84876-4.
- C. H. Hamann, H. Polligkeit, P. Wolf, Z. Smiatacz, An electrochemical synthesis of methyl α-isomaltoside, Carbohydr. Res., 1994, 265, 1-7.
- M. L. Wolfrom, A. B. Diwadkar, J. Gelas, D. Horton, New method of acetonation. Synthesis of 4,6-O-isopropylidene-D-glucopyranose, Carbohyd. Res., 1974, 35, 87-96.
- G. Hodosi, P. Kovac, Manipulation of free carbohydrates via stannylene acetals. Preparation of β-per-O-acyl derivatives of D-mannose, L-rhamnose, 6-O-trityl-D-talose, and D-lyxose, Carbohydr. Res., 1997, 303, 239-243.
- Z. Zhang, G. Magnusson, Conversion of p-methoxyphenyl glycosides into the corresponding glycosyl chlorides and bromides, and into thiophenyl glycosides, Carbohydr. Res., 1996, 295, 41-55.
- J. N. Schumacher, Isolation of 6-O-acetyl-2,3,4-tri-O-[(+)-3-methylvaleryl]-β-D-glucopyranose from tobacco, Carbohyd. Res., 1970, 13, 1-8.
- A. V. Wartburg, E. Angliker, J. Renz, Lignanglucoside aus Podophyllum peltatum L. 7. Mitteilung über mitosehemmende Naturstoffe, Helv. Chim. Acta, 1957, 40, 1331-1357.
- P. M. L. Goncalves, S. M. Roberts, P. W. H. Wan, Regioselective acylation of carbohydrate derivatives using lipases leading to a facile two-step procedure for the separation of some α- and β-glucopyranosides and galactopyranosides, Tetrahedron, 2004, 60, 927-932.
- S. Veibel, F. Eriksen, Synthesis and properties of several β-alkyl glucosides, Bull. Soc. Chim. Fr., Mem., 1936, 3, 277-283.
- H. L. Yu, J. H. Xu, W. Y. Lu, G. Q. Lin, Identification, purification and characterization of β-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides, Enzyme Microb. Technol., 2007, 40, 354-361.
- W. Pigman, R. O. Laffre, The preparation of butyl α-D-glucoside, J. Am. Chem. Soc., 1951, 73, 4994-4995.
- M. Kishida, M. Nishiuchi, K. Kato, H. Akita, Chemoenzymatic synthesis of n-hexyl and O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranosides, Chem. Pharm. Bull., 2004, 52, 1105-1108.
- V. Y. Joshi, M. R. Sawant, A convenient stereoselective synthesis of β-D-glucopyranosides, Indian J. Chem., Sect. B, 2006, 45, 461-465.
- H. Akita, E. Kawahara, K. Kato, Chemo-enzymatic synthesis of rhodiooctanoside isolated from Chinese medicines, Rhodiola radix, Tetrahedron: Asymmetry, 2004, 15, 1623-1629.
- C. R. Noller, W. C. Rockwell, Preparation of some higher alkyl glucosides, J. Am. Chem. Soc., 1938, 60, 2076-2077.
- X. Li, J. Turanek, P. Knoetigova, H. Kudlackova, J. Masek, D.B. Pennington, S.E. Rankin, B.L. Knutson, H.-J. Lehmler, Synthesis and biocompatibility evaluation of fluorinated, single-tailed glucopyranoside surfactants, New J. Chem., 2008, 32, 2169-2179.
- R. Hori, Y. Ikegami, Studies on carbohydrate derivatives. V. Syntheses of alkyl galactosides and alkyl glucosides, Yakugaku Zasshi, 1959, 79, 80-83. https://doi.org/10.1248/yakushi1947.79.1_80.
- M. Prostenik, N. Krvavica, The sphingolipide series. VIII. Synthesis of N-benzoylsphingine glucosides, compounds related to cerebrosides, Croat. Chem. Acta, 1957, 29, 101-105.
- W. Korytnyk, J. A. Mills, 128. Preparation and properties of some poly-O-acetylglycosyl chlorides and the "unstable" series, J. Chem. Soc., 1959, 636-649.
- C. S. Hudson, J. K. Dale, The isomeric penta-acetates of mannose, J. Am. Chem. Soc., 1915, 37, 1280-1282.
- C. Mayato, R. Dorta, J. Vazquez, Experimental evidence on the hydroxymethyl group conformation in alkyl β-mannopyranosides, Tetrahedron: Asymmetry, 2004, 15, 2385-2397.
- G. Zemplen, A. Gerecs, T. Valatin, Levomannosan, Ber. Dtsch. Chem. Ges. B, 1940, 73B, 575-580.
- V. Deulofeu, J. O. Deferrari, The reaction of ammonia with some acetylated and benzoylated monosaccharides. III. Derivatives of D-galactose, J. Org. Chem., 1952, 17, 1097-1101.
- R. K. Ness, H. G. Fletcher, J. C. S. Hudson,
,4-Anhydro-D-galactitol, J. Am. Chem. Soc., 1951, 73, 3742-3744.
- Z. Liu, H. S. Byun, R. Bittman, Synthesis of Immunostimulatory α-C-Galactosylceramide Glycolipids via Sonogashira Coupling, Asymmetric Epoxidation, and Trichloroacetimidate-Mediated Epoxide Opening, Org. Lett., 2010, 12, 2974-2977.
- X. Sun, L. Ji, S. Ren, S. Wan, T. Jiang, Chemical Synthesis and In Vitro Antitumor Activity of Quinizarin Glycoside Analogs, Synth. Commun., 2008, 38, 4116-4124.
- G. J. L. Bernardes, E. J. Grayson, S. Thompson, J. M. Chalker, J. C. Errey, F. ElOualid, T. D. W. Claridge, B. G. Davis, From disulfide- to
thioether-linked glycoproteins, Angew. Chem., Int. Ed., 2008, 47, 2244-2247.
- A. G. Goncalves, M. D. Noseda, M. E. R. Duarte, T. B. Grindley, Regioselective synthesis of long-chain ethers and their sulfates derived from methyl β-D-galactopyranoside and derivatives via dibutylstannylene acetal intermediates, Carbohydr. Res., 2005, 340, 2245-2250.
- L. J. J. Hronowski, W. A. Szarek, G. W. Hay, A. Krebs, W. T. Depew, Synthesis and characterization of 1-O-β-lactosyl-(R,S)-glycerols and 1,3-di-O-β-lactosylglycerol, Carbohydr. Res., 1989, 190, 203-218.
- R. Sardzik, G. T. Noble, M. J. Weissenborn, A. Martin, S. J. Webb, S. L. Flitsch, Preparation of aminoethyl glycosides for glycoconjugation, Beilstein J. Org. Chem., 2010, 6 699-703.
- H. Brunne, C. Keck, Enantioselective catalysis. 157. Carbohdrate-based, water-soluble ligands for the stereoselective hydrogenation of folic acid, Z. Anorg. Allg. Chem., 2005, 631, 2555-2562.
- F. Smith, . W. Van Cleve, A reinvestigation of the preparatin of β-methyl lactoside, J. Am. Chem. Soc., 952, 74, 1912-1913.
- M. A. Ali,L. Hough, A. C. Richardson, Thio and epidithio deriatives of methyl β-lactoside, Carbohydr. Rs., 1991, 216, 271-287.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).