A facile approach towards the synthesis of functionalized indenol derivatives identified as potent anti-oxidant and anti-bacterial agents

Authors

  • Sonia Taktouk 1Department of Chemistry, University of Tunis El Manar, Faculty of Science, Campus, 2092 Tunis, Tunisia
  • Jihene Ben Kraiem Institut National de Recherche et d'Analyse Physico-chimique (INRAP) Biotechpole Sidi-Thabet, 2020 Tunisie.
  • Hedia Chaabane Institut National de Recherche et d'Analyse Physico-chimique (INRAP) Biotechpole Sidi-Thabet, 2020 Tunisie.
  • Jacques Lebreton Université de Nantes, CNRS, UMR 6230, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France.
  • Hassen Amri 1Department of Chemistry, University of Tunis El Manar, Faculty of Science, Campus, 2092 Tunis, Tunisia

DOI:

https://doi.org/10.13171/mjc.2.5.2014.07.01.22

Abstract

  An elegant one-pot synthesis of new indenols 2 was successfully carried out, starting from 1-hydroxy-1H-indene-2-carboxylic acid 1. Thus, esterification of acid 1 with aliphatic alcohols in toluene at reflux and a catalytic amount of para-toluenesulfonic acid afforded the corresponding alkyl esters 2 in moderate to good yields. This classical esterification process enables an efficient entry to a variety of new indenol-based molecular models 2, which could be adapted to a range of drug candidates. All the synthesized compounds 2a-e were subjected to the preliminary evaluation for their potential anti-oxidant and anti-bacterial activities. The assessment of radical scavenging capacity of the compounds 2a-e towards the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was measured and these compounds were found to scavenge DPPH free radical efficiently. Moreover, the in vitro antibacterial activity of derivatives 2a-e has been tested against a panel of pathogenic agents to show potent activity against all sensitive and resistant ones.

References

- K. Samula, B. Cichy, Acta Pol. Pharm. 1985, 42, 256; Chem. Abstr. 105 (1986) 171931v.

- Co. Kurakay, Ltd. Jpn. Kokai Tokkyo Koho JP 81, 113, 740 (C1, C07C69/017), 7 Sept 1981; Chem. Abs. 96 (1982) 68724b.

- (a) R. C. Cambie, M. R. Metzler, P. S. Rutledge, P. D. Woodgate, J. Organomet. Chem. 1990, 381, C26-C30; (b) R. C. Cambie, M. R. Metzler, P. S. Rutledge, P. D. Woodgate, J. Organomet. Chem. 1990, 398, C22-C24; (c) N. P. Robinson, L. Main, B. K. Nicholson, J. Organomet. Chem. 1989, 364, C37-C39.

- D. J. Kerr, E. Hamel, M.K. Jung, B. L. Flynn, Bioorg. Med. Chem. 2007, 15, 3290-3298.

- H. Sugimoto, Y. Iimura, Y. Yamanishi, K. Yamatsu, J. Med. Chem. 1995, 38, 4821.

- (a) D. K. Rayabarapu, C.-H. Cheng, Chem. Commun. 2002, 942-943; (b) D. K. Rayabarapu, C.-H. Yang, C.-H. Cheng, J. Org. Chem. 2003, 68, 6726-6731; (c) K.-J. Chang, D. K. Rayabarapu, C.-H. Cheng, J. Org. Chem. 2004, 69, 4781-4787. (d) T. Matsuda, M. Makino, M. Murakami, Chem. Lett. 2005, 34, 1416-1417.

- (a) D. B. Grotjahn, In Comprehensive Organometallic Chemistry II, Vol. 12 (Ed.: L. S. Hegedus), Pergamon/Elsevier Science, Kidlington, 1995, 12, 703-741; (b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49-92; (c) I. Ojima, M. Tzamarioudaki, Z. R. Li, J. Donovan, Chem. Rev. 1996, 96, 635-662; (d) H.-W. Frühauf, Chem. Rev. 1997, 97, 523-596.

- L. S. Liebeskind, J. R. Gasdaska, J. S. MaCallum, S. J. Tremont, J. Org. Chem. 1989, 54, 669-677.

- (a) J. Vicente, J.-A. Abad, J. Gil-Rubio, Organometallics 1996, 15, 3509-3515; (b) J. Vicente, J. A. Abad, B. López-Peláez, E. Martίnez-Viviente, Organometallics 2002, 21, 58-67.

- (a) L. G. Quan, V. Gevorgyan, Y. Yamamoto, J. Am. Chem. Soc. 1999, 121, 3545-3446; (b) V. Gevorgyan, L. G. Quan, Y. Yamamoto, Tetrahedron Lett. 1999, 40, 4089-4092.

- T. Matsuda, M. Makino, M. Murakami, Chem. Lett. 2005, 34, 1416-1417.

- F. Kakiuchi, Y. Yamamoto, N. Chatani, S. Murai, Chem. Lett. 1995, 24, 681-682.

- R. F. C. Brown, M. Butcher, Aust. J. Chem. 1970, 23, 1901-1905.

- J. Otera, J. Nishikido, Esterification: Methods, Reactions, and Applications; Wiley-VCH: Weinheim 2010.

- S. T. Heller, R. Sarpong, Tetrahedron 2011, 67, 8851-8859.

- M. E. Krafft, E.-H. Son, R. J. Davoile, Tetrahedron Lett. 2005, 45, 6359-6362.

- (a) H. Amri, M. Rambaud, J. Villiéras, Tetrahedron 1990, 46, 3535-3546; (b) H. Amri, J. Villiéras, Tetrahedron Lett. 1989, 30, 7381-7382; (c) H. Amri, J. Villiéras, Tetrahedron Lett. 1987, 28, 5521-5524 ; (d) H. Amri, M. Rambaud, J. Villiéras, J. Organometallic Chem. 1986, 308, C27-C32; (e) J. Ben Kraiem, T. Ben Ayed, H. Amri, Tetrahedron Lett. 2006, 47, 7077-7079; (f) J. Ben Kraiem, H. Amri, Synth. Commun. 2013, 43, 110–117.

- R. Amarowicz, R.B. Pegg, P. Rahimi-Moghaddam, B. Barl, J.A. Weil, Food Chem. 2004, 84, 551-562.

- NCCLS (National Committee for Clinical laboratory Standards) 2001. Performance Standards for Anti-microbial Susceptibility Testing: Eleventh Informational Supplement. Document M 100-s11. National Committee for Clinical Laboratory Standard, Wayne, PA, USA.

- T. Hatano, H. Kagawa, T. Yasuhara, T. Okuda, Chem. Pharm. Bull. 1988, 36, 2090-2097.

- A. Rahman, M. I. Choudry, W. J. Thomsen, (2001), Bioassay Techniques for Drug Development, Harwood Academic: Amsterdam,The Netherlands.

- J.G. Colle, J.P. Duguid, A.G. Fraser, B.P. Marmion, in: T.J. Mackie, J.E. McCartney (Eds.), Practical Medical Biology, thirteenth ed. Churchill Livingstone, London, UK, (1989).

Downloads

Published

2014-01-07

Issue

Section

Organic Chemistry