A DFT study of the interaction of bimetallic Pt-Sn with Ethanol

Authors

  • Irineo-Pedro Zaragoza Instituto Tecnológico de Tlalnepantla
  • Ruben Santamaria
  • Xim Bokimi
  • V. Estrella
  • Víctor Castellanos

DOI:

https://doi.org/10.13171/mjc66/01712181415-zaragoza

Abstract

The study of the interaction of metallic with ethanol is important to understand alternative forms of generating electric energy. In this context, the interaction of the bimetallic Pt-Sn with ethanol is investigated using molecular dynamics in combination with density functional theory. Different interaction channels are determined by changing the initial conditions in the simulation, however, only one of them results in the catalysis of ethanol, producing in the fragmentation OH and H. The changes of the electronic energy, kinetic energy, electron density, HOMO and LUMO molecular orbitals and charge distribution some the relevant variables are used to characterize the interaction of the compounds with time. The results indicate that the Sn atom of the bimetallic compound plays a major role in the catalytic process.

Author Biography

Irineo-Pedro Zaragoza, Instituto Tecnológico de Tlalnepantla

Postgraduate Division and Research.Research.

References

- G. W. Crabtree and M. S. Dresselhaus MRS BULLETIN 2008, 33, 421-428.

- Noriko Behling Issues in Science and Technology 2013, 29, 83-90.

- Faur Ghenciu Current Opinion in Solid State and Material Science 2002, 6, 389-399.

- P. R. Luciene, P. E. A. Ticianelli, and E. M. J. Assaf, J. Power Sources 2008, 175, 482-489.

- U. B. J. Demirci, Power Sources 2007, 173, 1118.

- Walker G M 2010 Bioethanol: Science and technology of fuel alcohol ed Ventus Publishing ApS. 6-17.

- C. G. Lee, M. Umeda, and I. Uchida, J Power Source 2006, 160, 78-89

- J. Sun, X. P. Qiu, F. Wu and W. T. Zhu, Int. J. Hydrogen Energy 2005, 30, 437-445.

- J. Comas, F. Mariño, M. Laborde, N. Amadeo, Chem. Eng. J. 2004, 98, 61-68.

- N. Athanasios, Fatsikostas and E. Xenophon, Verykios J. Catal. 2005, 225, 439-452.

- E. D. Wang, J. B. Xu and T. S. Zhao, J. Phys. Chem. C, 2010, 114(23), 10489-10497.

- H. X. Huang, S. X. Chen, and C. Yuang, J. Power Source 2008, 175, 166-174.

- E. Antolini, J. Power Source, 2007, 170, 1-12.

- Y. Wang, Y. Mi, N. Redmon, and J. Holiday, J. Phys. Chem. C Nanomater. Interface 2010, 114,317-326.

- R. Alcala, J. W. Shabaker, G. W. Huber, Sanchez-Castillo M A and Dumesic J A, J. Phys. Chem. B, 2005, 109(6), 2074-2085.

- Z. F. Xu, and Y. Wang, J. Phys. Chem. C Nanomater Interfaces, 2011, 115(42) 20565-20571.

- I. P. Zaragoza, R. Salcedo, J. Vergara, J. Mol. Model., 2009, 15(5) ,447-51.

- S. C. Zignania, V, Bagliob, J. J. Linaresa, G. Monforteb, E. R. Gonzaleza, A. S. Aricòb, Electrochim. Acta, 2012, 70, 255– 265.

- V. Galvita, G. Siddiqi, P. Sun, A. T. Bell, Journal of Catalysis 2010, 271, 209–219.

- S. S. Gupta, S. Singh, J. Datta, Materials Chemistry and Physics, 2010, 120, 682–690.

- A. A. El-Shafei, M. Eiswirth, Surface Science, 2010, 604, 862–867.

- A. A. El-Shafei, M. Eiswirth, Surface Science, 2010, 604, 862-867.

- J.-M. Leger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, Electrochim. Acta, 2005, 50, 5118-5125.

- High-Performance Computational Chemistry Group, NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.1, (2002), Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

- A. D. Becke, Phys. Rev. A, 1988, 38, 3098.

- C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785.

- C. Kramer, A. Spinn, K. R. Liedl, J. Chem. Theory Comput., 2014, 10 (10), 4488-4496.

- L. Radom, J. A. Pople, J. Am. Chem. Soc., 1970, 92 (16), 4786-4795.

- Ahmed H. Zewail, J. Phys. Chem., 1996, 100 (31), 12701-12724.

- I. P. Zaragoza, M. Salas, B. Arista, Mediterr.J. Chem., 2017, 6(2), 42-48.

- I. P. Zaragoza, L. A. García-Serrano, R. Santamaria, J. Phys. Chem. B, 2005, 109 (2), 705-710.

Downloads

Published

2017-12-18

Issue

Section

Computational Chemistry