The photo-physical study of the interaction of riboflavin with Nicotine in bicontinuous microemulsion

Authors

  • Maurice Ohaekeleihem Iwunze Morgan State University

DOI:

https://doi.org/10.13171/mjc66/01712301535-iwunze

Abstract

Steady-state fluorescence spectroscopy was used to study the interaction of riboflavin with nicotine in a bicontinuous microemulsion system made up of 42.11:13.70:21.34:22.85 % w/w of water: oil: surfactant: cosurfactant. The surfactant used is cetyltrimethylammonium bromide (CTAB), the oil is tetradecane and the cosurfactant is 1-pentanol. It is observed that the interaction of riboflavin and nicotine in the prepared microemulsion lead to the quenching of riboflavin fluorescence. The bimolecular quenching rate constant, kq, of riboflavin by nicotine was observed as 4.15 x 109 M-1 s -1 with an efficiency of 56 %. The mechanism of the reaction is proposed to be diffusion limited in an activated electron transfer reaction in a solvent separated (outer-sphere) scheme. The electron transfer rate constant, kET, was calculated as 5.89 x 109 s -1 with an activation rate constant, ka, of 9.52 x 109 s -1 . The calculated solvent reorganization energy, λs, of the reaction was 1.09 eV, the free energy of interaction, ΔGo , is -2.9 eV and the free energy of activation, ΔG*, was calculated as 0.75 eV.

Author Biography

Maurice Ohaekeleihem Iwunze, Morgan State University

Chemistry Department Professor

References

- J.M. Grippa, et al., J. Agricultural and Food Chemistry 2014, 62, 1153-1158.

- B. Koziol, M. Markowicz, J. Kruk, B. Plytycz, Photochem Photobiol 2006. 82, 570-573.

- S. Hustad, M.C. McKinley, H. McNulty, et al., Clinical Chemistry, 2002, 48(9), 1571-1577.

- MedlnePlus http:www.nih.gov/medlineplus/druginfo/natural/957.html, 2012.

- http://umm.edu/health/medical/altmed/supplement/vitamin-b2-riboflavin.

- W.S.A. Innis, D.B. McCormick, A.L. Merrill, Biochemical Medicine 1985, 34, 151-165.

- H.J. Powers, Am. J. Clin. Nutr. 2003. 77, 1352-1360.

- V. Massey, Biochemical Society Transactions 2000, 28, part 4, 283-296.

- M.Y. Jung, Y.S. Oh, D.K. Kim, H.J. Kim, D.B. Min, J. Agric. Food Chem. 2007, 55, 170-174.

- T.J. Dickkerson, N. Yamamoto, K.D. Janda, Bioorganic & Medicinal Chemistry 2004, 12, 4981-4987.

- M.B. Babior, C. Takeuchi, J. Ruedi, A. Gutierrez, P. Wentworth Jr, PNAS 2003, 100(6), 3031-3034.

- A.D. Wentworth, L.H. Jones, P. Wentworth, K.D. Janda, R.A. Lerner, PNAS 2000, 97(20), 10930-10935.

- J. Wang, J.M. Kim, D.M. Donovan, K.C. Becker, M.D. Li, Mitochondrion 2009, 9, 186-195.

- W.A. Pryor, N.C. Arbour, B. Upham, D.F. Church, Free Radical Biology& Medicine 1992, 12, 365-372.

- Nicotine Chemistry, Chemistry Daily.com 2005.

- World of Molecules http://www.worldof molecules.com/drugs/nicotine.htm Nicotine 2014.

- M.L. Solt, Plant Physiology 1957, 32, 480-484.

- M.L. Solt, Ibid 1957, 32, 484-490.

- R.C. Jiloha, Indian J. Psychiatry 2010, 52(4), 301-307.

- R. Schartz-Bloom, G.G. de Nunez, www.pbs.org/wgbh/nova/cigarette/nicotine_nfp.htm.

- N.L. Benowitz, J. Hukkanen, P. Jacob III, Nicotine Psychopharmacology J. E. Henningfield, E. Calvento S. Pogun (Eds) 2009, 29-60.

- S. Banerje, G. Bandyopadhyaya, K. Chattopadhyay, B.D. Chattopadhyay, Int. J. Pharmacology 2010, 6(4) 444-455.

- J.A. Dani, J.I. Daoyun, F.M. Zhou, Neuron 2001, 31, 348-352.

- D.J.K. Balfour, A.E. Wright, M.E.M. Benwell, C.E. Birrell, Behavioural Brain Research 2000, 113, 73-83.

- Y. Wang, H.F. Sun, H.F. Wang, Y.F. Liu, Chinese Chemical Letters 2001, 12(5), 449-452.

- S.K. Mahapatra, S. Das, S. Bhattacharjee, N. Gautam, S. Majumdar, S. Roy, Toxicology Mechanism and Methods 2009, 19(2), 100-108.

- K. Chattopadhyay, B.D. Chattopadhyay, Indian J. Med. Res. 2008, 127, 571-576.

- R. Rusakowiez, A.C. Testa, The J. Phys. Chem. 1968, 72(8), 793-796.

- J.N. Demas, G.A. Crosby, Ibid 1971, 75(8), 991-1024.

- S.D.M. Islam, A. Penzkofer, P. Hegemann Chemical physics 2003, 291, 97-114.

- A. Filipowicz, S. Wolowicz, Int. J. Pharmaceutics 2003, 408, 152-156.

- G. Weber, F.W.J. Teale, Trans Faraday Soc. 1957. 33, 646-655.

- J. Koziol, Photochemistry and Photobiology 1966, 5, 41-54.

- W. Holzer, A. Penzkofer, M. Fuhrmann, P. Hegemann, Ibid 2002, 75(5), 479-487.

- S.J. Strickler, R.A. Berg, The J. Chem. Physics 1962, 37(4), 814-822.

- N.M. Al-Shaalan, Oriental J. Chem 2015, 31 (4), 1-7.

- S. Prahl, http://omlc.org/spectral/PhotochemCad/data/004.abs.txt , 2012.

- J. Youerabide, M.A. Dillon, M. Burton, The J. Chem. Physics 1964, 40(10), 3040-3052.

- R.M. Mevanki, N.R. Patil, H.D. Patil, R.A. Kusanur, J.S. Kadadevaramath, Indian J. of Pure & Applied Physics 2011, 49, 748-753.

- J.S. Kadadevarmath, T.P. Giraddi, G.H. Malimath, G.C. Chikkur, Radiation Measurements 1996, 26(1), 117-121.

- 41 T. Osakai, H. Hotta, T. Sugihara, K. Nakatani, J. Electroanalytical Chem. 2004, 571, 201-206.

- http:// wikipedia.org/wiki/Nicotine.

- Santa Cruz Biotech, http://scbt.com/datasheet-205906-riboflavin.htm.

- N. Sutin, Acc. Chem. Res. 1982, 15, 275-282.

- R.M. Fuoss, J. A. Chem. Soc. 1958, 80, 5059-5061.

- P. Debye, Trans Electrochem. 1942, 82(1), 265-272.

- K. Kikuchi, J. Photochem. Photobiol. A: Chem. 1992. 65, 149-156.

- K. Kikuchi, et al., Chemical Physics Letters 1991, 180()5), 403-408.

- J.M. Chen, T.I. Ho, C.Y. Mou, J. Phys. Chem. 1990, 94(7), 2889-2896.

- I.R. Gould, S. Farid, Acc. Chem. Res. 1996, 29, 522-528.

- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press 1983, pp. 263.

- R.A. Marcus, The J. Chem. Physics 1965, 43(2), 679-701.

- M.O. Iwunze, Physics and Chemistry of Liquids 2005, 43(2), 195-203.

- D. Rehm, A. Weller, Israel J. Chem. 1970, 8, 259-271.

- A.J. Bard, L.R. Falkner Electrochemical Methods: Fundamentals and Applications. 2nd Ed., John Wiley and Sons. 2001, pp. 273.

- V.S. Gladkikh, A.L. Burshtein, H.L. Tevernier, M.D. Fayer, J. Phys. Chem. A 2002, 106, 6982-6990.

Downloads

Published

2017-12-30

Issue

Section

Physical Chemistry